Metamath Proof Explorer


Theorem rhmsubcALTVlem3

Description: Lemma 3 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φ U V
rngcrescrhmALTV.c C = RngCatALTV U
rngcrescrhmALTV.r φ R = Ring U
rngcrescrhmALTV.h H = RingHom R × R
Assertion rhmsubcALTVlem3 φ x R Id RngCatALTV U x x H x

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φ U V
2 rngcrescrhmALTV.c C = RngCatALTV U
3 rngcrescrhmALTV.r φ R = Ring U
4 rngcrescrhmALTV.h H = RingHom R × R
5 3 eleq2d φ x R x Ring U
6 elinel1 x Ring U x Ring
7 5 6 syl6bi φ x R x Ring
8 7 imp φ x R x Ring
9 eqid Base x = Base x
10 9 idrhm x Ring I Base x x RingHom x
11 8 10 syl φ x R I Base x x RingHom x
12 1 adantr φ x R U V
13 eqid RngCatALTV U = RngCatALTV U
14 eqid Base RngCatALTV U = Base RngCatALTV U
15 13 14 rngccatidALTV U V RngCatALTV U Cat Id RngCatALTV U = y Base RngCatALTV U I Base y
16 simpr RngCatALTV U Cat Id RngCatALTV U = y Base RngCatALTV U I Base y Id RngCatALTV U = y Base RngCatALTV U I Base y
17 12 15 16 3syl φ x R Id RngCatALTV U = y Base RngCatALTV U I Base y
18 fveq2 y = x Base y = Base x
19 18 reseq2d y = x I Base y = I Base x
20 19 adantl φ x R y = x I Base y = I Base x
21 incom Ring U = U Ring
22 3 21 eqtrdi φ R = U Ring
23 22 eleq2d φ x R x U Ring
24 ringrng x Ring x Rng
25 24 anim2i x U x Ring x U x Rng
26 elin x U Ring x U x Ring
27 elin x U Rng x U x Rng
28 25 26 27 3imtr4i x U Ring x U Rng
29 23 28 syl6bi φ x R x U Rng
30 29 imp φ x R x U Rng
31 2 eqcomi RngCatALTV U = C
32 31 fveq2i Base RngCatALTV U = Base C
33 2 32 1 rngcbasALTV φ Base RngCatALTV U = U Rng
34 33 adantr φ x R Base RngCatALTV U = U Rng
35 30 34 eleqtrrd φ x R x Base RngCatALTV U
36 fvexd φ x R Base x V
37 36 resiexd φ x R I Base x V
38 17 20 35 37 fvmptd φ x R Id RngCatALTV U x = I Base x
39 1 2 3 4 rhmsubcALTVlem2 φ x R x R x H x = x RingHom x
40 39 3anidm23 φ x R x H x = x RingHom x
41 11 38 40 3eltr4d φ x R Id RngCatALTV U x x H x