Metamath Proof Explorer


Theorem rhmsubcALTVlem4

Description: Lemma 4 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u φUV
rngcrescrhmALTV.c C=RngCatALTVU
rngcrescrhmALTV.r φR=RingU
rngcrescrhmALTV.h H=RingHomR×R
Assertion rhmsubcALTVlem4 φxRyRzRfxHygyHzgxycompRngCatALTVUzfxHz

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u φUV
2 rngcrescrhmALTV.c C=RngCatALTVU
3 rngcrescrhmALTV.r φR=RingU
4 rngcrescrhmALTV.h H=RingHomR×R
5 simpl φxRφ
6 5 adantr φxRyRzRφ
7 simpr φxRxR
8 7 adantr φxRyRzRxR
9 simpl yRzRyR
10 9 adantl φxRyRzRyR
11 1 2 3 4 rhmsubcALTVlem2 φxRyRxHy=xRingHomy
12 6 8 10 11 syl3anc φxRyRzRxHy=xRingHomy
13 12 eleq2d φxRyRzRfxHyfxRingHomy
14 simpr yRzRzR
15 14 adantl φxRyRzRzR
16 1 2 3 4 rhmsubcALTVlem2 φyRzRyHz=yRingHomz
17 6 10 15 16 syl3anc φxRyRzRyHz=yRingHomz
18 17 eleq2d φxRyRzRgyHzgyRingHomz
19 13 18 anbi12d φxRyRzRfxHygyHzfxRingHomygyRingHomz
20 rhmco gyRingHomzfxRingHomygfxRingHomz
21 20 ancoms fxRingHomygyRingHomzgfxRingHomz
22 19 21 syl6bi φxRyRzRfxHygyHzgfxRingHomz
23 22 imp φxRyRzRfxHygyHzgfxRingHomz
24 eqid RngCatALTVU=RngCatALTVU
25 eqid BaseRngCatALTVU=BaseRngCatALTVU
26 1 ad3antrrr φxRyRzRfxHygyHzUV
27 eqid compRngCatALTVU=compRngCatALTVU
28 incom RingU=URing
29 ringrng xRingxRng
30 29 a1i φxRingxRng
31 30 ssrdv φRingRng
32 sslin RingRngURingURng
33 31 32 syl φURingURng
34 28 33 eqsstrid φRingUURng
35 24 25 1 rngcbasALTV φBaseRngCatALTVU=URng
36 34 3 35 3sstr4d φRBaseRngCatALTVU
37 36 sselda φxRxBaseRngCatALTVU
38 37 adantr φxRyRzRxBaseRngCatALTVU
39 38 adantr φxRyRzRfxHygyHzxBaseRngCatALTVU
40 36 sseld φyRyBaseRngCatALTVU
41 40 adantr φxRyRyBaseRngCatALTVU
42 41 com12 yRφxRyBaseRngCatALTVU
43 42 adantr yRzRφxRyBaseRngCatALTVU
44 43 impcom φxRyRzRyBaseRngCatALTVU
45 44 adantr φxRyRzRfxHygyHzyBaseRngCatALTVU
46 36 sseld φzRzBaseRngCatALTVU
47 46 adantr φxRzRzBaseRngCatALTVU
48 47 adantld φxRyRzRzBaseRngCatALTVU
49 48 imp φxRyRzRzBaseRngCatALTVU
50 49 adantr φxRyRzRfxHygyHzzBaseRngCatALTVU
51 rhmisrnghm fxRingHomyfxRngHomy
52 13 51 syl6bi φxRyRzRfxHyfxRngHomy
53 52 com12 fxHyφxRyRzRfxRngHomy
54 53 adantr fxHygyHzφxRyRzRfxRngHomy
55 54 impcom φxRyRzRfxHygyHzfxRngHomy
56 rhmisrnghm gyRingHomzgyRngHomz
57 18 56 syl6bi φxRyRzRgyHzgyRngHomz
58 57 adantld φxRyRzRfxHygyHzgyRngHomz
59 58 imp φxRyRzRfxHygyHzgyRngHomz
60 24 25 26 27 39 45 50 55 59 rngccoALTV φxRyRzRfxHygyHzgxycompRngCatALTVUzf=gf
61 1 2 3 4 rhmsubcALTVlem2 φxRzRxHz=xRingHomz
62 6 8 15 61 syl3anc φxRyRzRxHz=xRingHomz
63 62 adantr φxRyRzRfxHygyHzxHz=xRingHomz
64 23 60 63 3eltr4d φxRyRzRfxHygyHzgxycompRngCatALTVUzfxHz