Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
|
2 |
|
rngcrescrhmALTV.c |
|
3 |
|
rngcrescrhmALTV.r |
|
4 |
|
rngcrescrhmALTV.h |
|
5 |
|
simpl |
|
6 |
5
|
adantr |
|
7 |
|
simpr |
|
8 |
7
|
adantr |
|
9 |
|
simpl |
|
10 |
9
|
adantl |
|
11 |
1 2 3 4
|
rhmsubcALTVlem2 |
|
12 |
6 8 10 11
|
syl3anc |
|
13 |
12
|
eleq2d |
|
14 |
|
simpr |
|
15 |
14
|
adantl |
|
16 |
1 2 3 4
|
rhmsubcALTVlem2 |
|
17 |
6 10 15 16
|
syl3anc |
|
18 |
17
|
eleq2d |
|
19 |
13 18
|
anbi12d |
|
20 |
|
rhmco |
|
21 |
20
|
ancoms |
|
22 |
19 21
|
syl6bi |
|
23 |
22
|
imp |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
1
|
ad3antrrr |
|
27 |
|
eqid |
|
28 |
|
incom |
|
29 |
|
ringrng |
|
30 |
29
|
a1i |
|
31 |
30
|
ssrdv |
|
32 |
|
sslin |
|
33 |
31 32
|
syl |
|
34 |
28 33
|
eqsstrid |
|
35 |
24 25 1
|
rngcbasALTV |
|
36 |
34 3 35
|
3sstr4d |
|
37 |
36
|
sselda |
|
38 |
37
|
adantr |
|
39 |
38
|
adantr |
|
40 |
36
|
sseld |
|
41 |
40
|
adantr |
|
42 |
41
|
com12 |
|
43 |
42
|
adantr |
|
44 |
43
|
impcom |
|
45 |
44
|
adantr |
|
46 |
36
|
sseld |
|
47 |
46
|
adantr |
|
48 |
47
|
adantld |
|
49 |
48
|
imp |
|
50 |
49
|
adantr |
|
51 |
|
rhmisrnghm |
|
52 |
13 51
|
syl6bi |
|
53 |
52
|
com12 |
|
54 |
53
|
adantr |
|
55 |
54
|
impcom |
|
56 |
|
rhmisrnghm |
|
57 |
18 56
|
syl6bi |
|
58 |
57
|
adantld |
|
59 |
58
|
imp |
|
60 |
24 25 26 27 39 45 50 55 59
|
rngccoALTV |
|
61 |
1 2 3 4
|
rhmsubcALTVlem2 |
|
62 |
6 8 15 61
|
syl3anc |
|
63 |
62
|
adantr |
|
64 |
23 60 63
|
3eltr4d |
|