Description: Lemma 4 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcrescrhmALTV.u | |
|
rngcrescrhmALTV.c | |
||
rngcrescrhmALTV.r | |
||
rngcrescrhmALTV.h | |
||
Assertion | rhmsubcALTVlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcrescrhmALTV.u | |
|
2 | rngcrescrhmALTV.c | |
|
3 | rngcrescrhmALTV.r | |
|
4 | rngcrescrhmALTV.h | |
|
5 | simpl | |
|
6 | 5 | adantr | |
7 | simpr | |
|
8 | 7 | adantr | |
9 | simpl | |
|
10 | 9 | adantl | |
11 | 1 2 3 4 | rhmsubcALTVlem2 | |
12 | 6 8 10 11 | syl3anc | |
13 | 12 | eleq2d | |
14 | simpr | |
|
15 | 14 | adantl | |
16 | 1 2 3 4 | rhmsubcALTVlem2 | |
17 | 6 10 15 16 | syl3anc | |
18 | 17 | eleq2d | |
19 | 13 18 | anbi12d | |
20 | rhmco | |
|
21 | 20 | ancoms | |
22 | 19 21 | syl6bi | |
23 | 22 | imp | |
24 | eqid | |
|
25 | eqid | |
|
26 | 1 | ad3antrrr | |
27 | eqid | |
|
28 | incom | |
|
29 | ringrng | |
|
30 | 29 | a1i | |
31 | 30 | ssrdv | |
32 | sslin | |
|
33 | 31 32 | syl | |
34 | 28 33 | eqsstrid | |
35 | 24 25 1 | rngcbasALTV | |
36 | 34 3 35 | 3sstr4d | |
37 | 36 | sselda | |
38 | 37 | adantr | |
39 | 38 | adantr | |
40 | 36 | sseld | |
41 | 40 | adantr | |
42 | 41 | com12 | |
43 | 42 | adantr | |
44 | 43 | impcom | |
45 | 44 | adantr | |
46 | 36 | sseld | |
47 | 46 | adantr | |
48 | 47 | adantld | |
49 | 48 | imp | |
50 | 49 | adantr | |
51 | rhmisrnghm | |
|
52 | 13 51 | syl6bi | |
53 | 52 | com12 | |
54 | 53 | adantr | |
55 | 54 | impcom | |
56 | rhmisrnghm | |
|
57 | 18 56 | syl6bi | |
58 | 57 | adantld | |
59 | 58 | imp | |
60 | 24 25 26 27 39 45 50 55 59 | rngccoALTV | |
61 | 1 2 3 4 | rhmsubcALTVlem2 | |
62 | 6 8 15 61 | syl3anc | |
63 | 62 | adantr | |
64 | 23 60 63 | 3eltr4d | |