| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhmALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
rngcrescrhmALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
| 3 |
|
rngcrescrhmALTV.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
| 4 |
|
rngcrescrhmALTV.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝜑 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝜑 ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑅 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) |
| 9 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑅 ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) |
| 11 |
1 2 3 4
|
rhmsubcALTVlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 12 |
6 8 10 11
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑅 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑅 ) |
| 16 |
1 2 3 4
|
rhmsubcALTVlem2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 17 |
6 10 15 16
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
| 19 |
13 18
|
anbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ↔ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) |
| 20 |
|
rhmco |
⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 21 |
20
|
ancoms |
⊢ ( ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 22 |
19 21
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 24 |
|
eqid |
⊢ ( RngCatALTV ‘ 𝑈 ) = ( RngCatALTV ‘ 𝑈 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) |
| 26 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 27 |
|
eqid |
⊢ ( comp ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( comp ‘ ( RngCatALTV ‘ 𝑈 ) ) |
| 28 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
| 29 |
|
ringrng |
⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Rng ) |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ Ring → 𝑥 ∈ Rng ) ) |
| 31 |
30
|
ssrdv |
⊢ ( 𝜑 → Ring ⊆ Rng ) |
| 32 |
|
sslin |
⊢ ( Ring ⊆ Rng → ( 𝑈 ∩ Ring ) ⊆ ( 𝑈 ∩ Rng ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ ( 𝑈 ∩ Rng ) ) |
| 34 |
28 33
|
eqsstrid |
⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( 𝑈 ∩ Rng ) ) |
| 35 |
24 25 1
|
rngcbasALTV |
⊢ ( 𝜑 → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
| 36 |
34 3 35
|
3sstr4d |
⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 37 |
36
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 40 |
36
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 42 |
41
|
com12 |
⊢ ( 𝑦 ∈ 𝑅 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 44 |
43
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 46 |
36
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 → 𝑧 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑧 ∈ 𝑅 → 𝑧 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 48 |
47
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 51 |
|
rhmisrnghm |
⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 ∈ ( 𝑥 RngHom 𝑦 ) ) |
| 52 |
13 51
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 ∈ ( 𝑥 RngHom 𝑦 ) ) ) |
| 53 |
52
|
com12 |
⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 ∈ ( 𝑥 RngHom 𝑦 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 ∈ ( 𝑥 RngHom 𝑦 ) ) ) |
| 55 |
54
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 RngHom 𝑦 ) ) |
| 56 |
|
rhmisrnghm |
⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 ∈ ( 𝑦 RngHom 𝑧 ) ) |
| 57 |
18 56
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 ∈ ( 𝑦 RngHom 𝑧 ) ) ) |
| 58 |
57
|
adantld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RngHom 𝑧 ) ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 RngHom 𝑧 ) ) |
| 60 |
24 25 26 27 39 45 50 55 59
|
rngccoALTV |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCatALTV ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 61 |
1 2 3 4
|
rhmsubcALTVlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 62 |
6 8 15 61
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 64 |
23 60 63
|
3eltr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCatALTV ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |