| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcrescrhmALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | rngcrescrhmALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 3 |  | rngcrescrhmALTV.r | ⊢ ( 𝜑  →  𝑅  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 4 |  | rngcrescrhmALTV.h | ⊢ 𝐻  =  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) | 
						
							| 5 |  | opelxpi | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝑅  ×  𝑅 ) ) | 
						
							| 6 | 5 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( 𝑅  ×  𝑅 ) ) | 
						
							| 7 | 6 | fvresd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) ‘ 〈 𝑋 ,  𝑌 〉 )  =  (  RingHom  ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 8 |  | df-ov | ⊢ ( 𝑋 𝐻 𝑌 )  =  ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 9 | 4 | fveq1i | ⊢ ( 𝐻 ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 10 | 8 9 | eqtri | ⊢ ( 𝑋 𝐻 𝑌 )  =  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 11 |  | df-ov | ⊢ ( 𝑋  RingHom  𝑌 )  =  (  RingHom  ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 12 | 7 10 11 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑅  ∧  𝑌  ∈  𝑅 )  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋  RingHom  𝑌 ) ) |