| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcrescrhmALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | rngcrescrhmALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 3 |  | rngcrescrhmALTV.r |  |-  ( ph -> R = ( Ring i^i U ) ) | 
						
							| 4 |  | rngcrescrhmALTV.h |  |-  H = ( RingHom |` ( R X. R ) ) | 
						
							| 5 |  | opelxpi |  |-  ( ( X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) | 
						
							| 6 | 5 | 3adant1 |  |-  ( ( ph /\ X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) | 
						
							| 7 | 6 | fvresd |  |-  ( ( ph /\ X e. R /\ Y e. R ) -> ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) = ( RingHom ` <. X , Y >. ) ) | 
						
							| 8 |  | df-ov |  |-  ( X H Y ) = ( H ` <. X , Y >. ) | 
						
							| 9 | 4 | fveq1i |  |-  ( H ` <. X , Y >. ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) | 
						
							| 10 | 8 9 | eqtri |  |-  ( X H Y ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) | 
						
							| 11 |  | df-ov |  |-  ( X RingHom Y ) = ( RingHom ` <. X , Y >. ) | 
						
							| 12 | 7 10 11 | 3eqtr4g |  |-  ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) ) |