Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
|- ( ph -> U e. V ) |
2 |
|
rngcrescrhmALTV.c |
|- C = ( RngCatALTV ` U ) |
3 |
|
rngcrescrhmALTV.r |
|- ( ph -> R = ( Ring i^i U ) ) |
4 |
|
rngcrescrhmALTV.h |
|- H = ( RingHom |` ( R X. R ) ) |
5 |
|
opelxpi |
|- ( ( X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) |
6 |
5
|
3adant1 |
|- ( ( ph /\ X e. R /\ Y e. R ) -> <. X , Y >. e. ( R X. R ) ) |
7 |
6
|
fvresd |
|- ( ( ph /\ X e. R /\ Y e. R ) -> ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) = ( RingHom ` <. X , Y >. ) ) |
8 |
|
df-ov |
|- ( X H Y ) = ( H ` <. X , Y >. ) |
9 |
4
|
fveq1i |
|- ( H ` <. X , Y >. ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) |
10 |
8 9
|
eqtri |
|- ( X H Y ) = ( ( RingHom |` ( R X. R ) ) ` <. X , Y >. ) |
11 |
|
df-ov |
|- ( X RingHom Y ) = ( RingHom ` <. X , Y >. ) |
12 |
7 10 11
|
3eqtr4g |
|- ( ( ph /\ X e. R /\ Y e. R ) -> ( X H Y ) = ( X RingHom Y ) ) |