Metamath Proof Explorer


Theorem rhmsubcALTVlem3

Description: Lemma 3 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u
|- ( ph -> U e. V )
rngcrescrhmALTV.c
|- C = ( RngCatALTV ` U )
rngcrescrhmALTV.r
|- ( ph -> R = ( Ring i^i U ) )
rngcrescrhmALTV.h
|- H = ( RingHom |` ( R X. R ) )
Assertion rhmsubcALTVlem3
|- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCatALTV ` U ) ) ` x ) e. ( x H x ) )

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u
 |-  ( ph -> U e. V )
2 rngcrescrhmALTV.c
 |-  C = ( RngCatALTV ` U )
3 rngcrescrhmALTV.r
 |-  ( ph -> R = ( Ring i^i U ) )
4 rngcrescrhmALTV.h
 |-  H = ( RingHom |` ( R X. R ) )
5 3 eleq2d
 |-  ( ph -> ( x e. R <-> x e. ( Ring i^i U ) ) )
6 elinel1
 |-  ( x e. ( Ring i^i U ) -> x e. Ring )
7 5 6 syl6bi
 |-  ( ph -> ( x e. R -> x e. Ring ) )
8 7 imp
 |-  ( ( ph /\ x e. R ) -> x e. Ring )
9 eqid
 |-  ( Base ` x ) = ( Base ` x )
10 9 idrhm
 |-  ( x e. Ring -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) )
11 8 10 syl
 |-  ( ( ph /\ x e. R ) -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) )
12 1 adantr
 |-  ( ( ph /\ x e. R ) -> U e. V )
13 eqid
 |-  ( RngCatALTV ` U ) = ( RngCatALTV ` U )
14 eqid
 |-  ( Base ` ( RngCatALTV ` U ) ) = ( Base ` ( RngCatALTV ` U ) )
15 13 14 rngccatidALTV
 |-  ( U e. V -> ( ( RngCatALTV ` U ) e. Cat /\ ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) )
16 simpr
 |-  ( ( ( RngCatALTV ` U ) e. Cat /\ ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) -> ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) )
17 12 15 16 3syl
 |-  ( ( ph /\ x e. R ) -> ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) )
18 fveq2
 |-  ( y = x -> ( Base ` y ) = ( Base ` x ) )
19 18 reseq2d
 |-  ( y = x -> ( _I |` ( Base ` y ) ) = ( _I |` ( Base ` x ) ) )
20 19 adantl
 |-  ( ( ( ph /\ x e. R ) /\ y = x ) -> ( _I |` ( Base ` y ) ) = ( _I |` ( Base ` x ) ) )
21 incom
 |-  ( Ring i^i U ) = ( U i^i Ring )
22 3 21 eqtrdi
 |-  ( ph -> R = ( U i^i Ring ) )
23 22 eleq2d
 |-  ( ph -> ( x e. R <-> x e. ( U i^i Ring ) ) )
24 ringrng
 |-  ( x e. Ring -> x e. Rng )
25 24 anim2i
 |-  ( ( x e. U /\ x e. Ring ) -> ( x e. U /\ x e. Rng ) )
26 elin
 |-  ( x e. ( U i^i Ring ) <-> ( x e. U /\ x e. Ring ) )
27 elin
 |-  ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) )
28 25 26 27 3imtr4i
 |-  ( x e. ( U i^i Ring ) -> x e. ( U i^i Rng ) )
29 23 28 syl6bi
 |-  ( ph -> ( x e. R -> x e. ( U i^i Rng ) ) )
30 29 imp
 |-  ( ( ph /\ x e. R ) -> x e. ( U i^i Rng ) )
31 2 eqcomi
 |-  ( RngCatALTV ` U ) = C
32 31 fveq2i
 |-  ( Base ` ( RngCatALTV ` U ) ) = ( Base ` C )
33 2 32 1 rngcbasALTV
 |-  ( ph -> ( Base ` ( RngCatALTV ` U ) ) = ( U i^i Rng ) )
34 33 adantr
 |-  ( ( ph /\ x e. R ) -> ( Base ` ( RngCatALTV ` U ) ) = ( U i^i Rng ) )
35 30 34 eleqtrrd
 |-  ( ( ph /\ x e. R ) -> x e. ( Base ` ( RngCatALTV ` U ) ) )
36 fvexd
 |-  ( ( ph /\ x e. R ) -> ( Base ` x ) e. _V )
37 36 resiexd
 |-  ( ( ph /\ x e. R ) -> ( _I |` ( Base ` x ) ) e. _V )
38 17 20 35 37 fvmptd
 |-  ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCatALTV ` U ) ) ` x ) = ( _I |` ( Base ` x ) ) )
39 1 2 3 4 rhmsubcALTVlem2
 |-  ( ( ph /\ x e. R /\ x e. R ) -> ( x H x ) = ( x RingHom x ) )
40 39 3anidm23
 |-  ( ( ph /\ x e. R ) -> ( x H x ) = ( x RingHom x ) )
41 11 38 40 3eltr4d
 |-  ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCatALTV ` U ) ) ` x ) e. ( x H x ) )