Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
|- ( ph -> U e. V ) |
2 |
|
rngcrescrhmALTV.c |
|- C = ( RngCatALTV ` U ) |
3 |
|
rngcrescrhmALTV.r |
|- ( ph -> R = ( Ring i^i U ) ) |
4 |
|
rngcrescrhmALTV.h |
|- H = ( RingHom |` ( R X. R ) ) |
5 |
3
|
eleq2d |
|- ( ph -> ( x e. R <-> x e. ( Ring i^i U ) ) ) |
6 |
|
elinel1 |
|- ( x e. ( Ring i^i U ) -> x e. Ring ) |
7 |
5 6
|
syl6bi |
|- ( ph -> ( x e. R -> x e. Ring ) ) |
8 |
7
|
imp |
|- ( ( ph /\ x e. R ) -> x e. Ring ) |
9 |
|
eqid |
|- ( Base ` x ) = ( Base ` x ) |
10 |
9
|
idrhm |
|- ( x e. Ring -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
11 |
8 10
|
syl |
|- ( ( ph /\ x e. R ) -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
12 |
1
|
adantr |
|- ( ( ph /\ x e. R ) -> U e. V ) |
13 |
|
eqid |
|- ( RngCatALTV ` U ) = ( RngCatALTV ` U ) |
14 |
|
eqid |
|- ( Base ` ( RngCatALTV ` U ) ) = ( Base ` ( RngCatALTV ` U ) ) |
15 |
13 14
|
rngccatidALTV |
|- ( U e. V -> ( ( RngCatALTV ` U ) e. Cat /\ ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) ) |
16 |
|
simpr |
|- ( ( ( RngCatALTV ` U ) e. Cat /\ ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) -> ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) |
17 |
12 15 16
|
3syl |
|- ( ( ph /\ x e. R ) -> ( Id ` ( RngCatALTV ` U ) ) = ( y e. ( Base ` ( RngCatALTV ` U ) ) |-> ( _I |` ( Base ` y ) ) ) ) |
18 |
|
fveq2 |
|- ( y = x -> ( Base ` y ) = ( Base ` x ) ) |
19 |
18
|
reseq2d |
|- ( y = x -> ( _I |` ( Base ` y ) ) = ( _I |` ( Base ` x ) ) ) |
20 |
19
|
adantl |
|- ( ( ( ph /\ x e. R ) /\ y = x ) -> ( _I |` ( Base ` y ) ) = ( _I |` ( Base ` x ) ) ) |
21 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
22 |
3 21
|
eqtrdi |
|- ( ph -> R = ( U i^i Ring ) ) |
23 |
22
|
eleq2d |
|- ( ph -> ( x e. R <-> x e. ( U i^i Ring ) ) ) |
24 |
|
ringrng |
|- ( x e. Ring -> x e. Rng ) |
25 |
24
|
anim2i |
|- ( ( x e. U /\ x e. Ring ) -> ( x e. U /\ x e. Rng ) ) |
26 |
|
elin |
|- ( x e. ( U i^i Ring ) <-> ( x e. U /\ x e. Ring ) ) |
27 |
|
elin |
|- ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) ) |
28 |
25 26 27
|
3imtr4i |
|- ( x e. ( U i^i Ring ) -> x e. ( U i^i Rng ) ) |
29 |
23 28
|
syl6bi |
|- ( ph -> ( x e. R -> x e. ( U i^i Rng ) ) ) |
30 |
29
|
imp |
|- ( ( ph /\ x e. R ) -> x e. ( U i^i Rng ) ) |
31 |
2
|
eqcomi |
|- ( RngCatALTV ` U ) = C |
32 |
31
|
fveq2i |
|- ( Base ` ( RngCatALTV ` U ) ) = ( Base ` C ) |
33 |
2 32 1
|
rngcbasALTV |
|- ( ph -> ( Base ` ( RngCatALTV ` U ) ) = ( U i^i Rng ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ x e. R ) -> ( Base ` ( RngCatALTV ` U ) ) = ( U i^i Rng ) ) |
35 |
30 34
|
eleqtrrd |
|- ( ( ph /\ x e. R ) -> x e. ( Base ` ( RngCatALTV ` U ) ) ) |
36 |
|
fvexd |
|- ( ( ph /\ x e. R ) -> ( Base ` x ) e. _V ) |
37 |
36
|
resiexd |
|- ( ( ph /\ x e. R ) -> ( _I |` ( Base ` x ) ) e. _V ) |
38 |
17 20 35 37
|
fvmptd |
|- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCatALTV ` U ) ) ` x ) = ( _I |` ( Base ` x ) ) ) |
39 |
1 2 3 4
|
rhmsubcALTVlem2 |
|- ( ( ph /\ x e. R /\ x e. R ) -> ( x H x ) = ( x RingHom x ) ) |
40 |
39
|
3anidm23 |
|- ( ( ph /\ x e. R ) -> ( x H x ) = ( x RingHom x ) ) |
41 |
11 38 40
|
3eltr4d |
|- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCatALTV ` U ) ) ` x ) e. ( x H x ) ) |