Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
rngcrescrhmALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
3 |
|
rngcrescrhmALTV.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rngcrescrhmALTV.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
5 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
6 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring ) |
7 |
5 6
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ Ring ) ) |
8 |
7
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ Ring ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
10 |
9
|
idrhm |
⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑈 ∈ 𝑉 ) |
13 |
|
eqid |
⊢ ( RngCatALTV ‘ 𝑈 ) = ( RngCatALTV ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) |
15 |
13 14
|
rngccatidALTV |
⊢ ( 𝑈 ∈ 𝑉 → ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) ) |
16 |
|
simpr |
⊢ ( ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) |
17 |
12 15 16
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑥 ) ) |
19 |
18
|
reseq2d |
⊢ ( 𝑦 = 𝑥 → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑦 = 𝑥 ) → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
21 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
22 |
3 21
|
eqtrdi |
⊢ ( 𝜑 → 𝑅 = ( 𝑈 ∩ Ring ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( 𝑈 ∩ Ring ) ) ) |
24 |
|
ringrng |
⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Rng ) |
25 |
24
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
26 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) ) |
27 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
28 |
25 26 27
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
29 |
23 28
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
30 |
29
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
31 |
2
|
eqcomi |
⊢ ( RngCatALTV ‘ 𝑈 ) = 𝐶 |
32 |
31
|
fveq2i |
⊢ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ 𝐶 ) |
33 |
2 32 1
|
rngcbasALTV |
⊢ ( 𝜑 → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
35 |
30 34
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
36 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Base ‘ 𝑥 ) ∈ V ) |
37 |
36
|
resiexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ V ) |
38 |
17 20 35 37
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
39 |
1 2 3 4
|
rhmsubcALTVlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
40 |
39
|
3anidm23 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
41 |
11 38 40
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |