| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngcrescrhmALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
rngcrescrhmALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
| 3 |
|
rngcrescrhmALTV.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
| 4 |
|
rngcrescrhmALTV.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
| 5 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 6 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring ) |
| 7 |
5 6
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ Ring ) ) |
| 8 |
7
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ Ring ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
| 10 |
9
|
idrhm |
⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑈 ∈ 𝑉 ) |
| 13 |
|
eqid |
⊢ ( RngCatALTV ‘ 𝑈 ) = ( RngCatALTV ‘ 𝑈 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) |
| 15 |
13 14
|
rngccatidALTV |
⊢ ( 𝑈 ∈ 𝑉 → ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) ) |
| 16 |
|
simpr |
⊢ ( ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) |
| 17 |
12 15 16
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑥 ) ) |
| 19 |
18
|
reseq2d |
⊢ ( 𝑦 = 𝑥 → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑦 = 𝑥 ) → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 21 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
| 22 |
3 21
|
eqtrdi |
⊢ ( 𝜑 → 𝑅 = ( 𝑈 ∩ Ring ) ) |
| 23 |
22
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 24 |
|
ringrng |
⊢ ( 𝑥 ∈ Ring → 𝑥 ∈ Rng ) |
| 25 |
24
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 26 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) ) |
| 27 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Rng ) ) |
| 28 |
25 26 27
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
| 29 |
23 28
|
biimtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) ) |
| 31 |
2
|
eqcomi |
⊢ ( RngCatALTV ‘ 𝑈 ) = 𝐶 |
| 32 |
31
|
fveq2i |
⊢ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ 𝐶 ) |
| 33 |
2 32 1
|
rngcbasALTV |
⊢ ( 𝜑 → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
| 35 |
30 34
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ) |
| 36 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( Base ‘ 𝑥 ) ∈ V ) |
| 37 |
36
|
resiexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ V ) |
| 38 |
17 20 35 37
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 39 |
1 2 3 4
|
rhmsubcALTVlem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 40 |
39
|
3anidm23 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 41 |
11 38 40
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |