Metamath Proof Explorer


Theorem rhmsubcALTVlem3

Description: Lemma 3 for rhmsubcALTV . (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngcrescrhmALTV.u ( 𝜑𝑈𝑉 )
rngcrescrhmALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
rngcrescrhmALTV.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
Assertion rhmsubcALTVlem3 ( ( 𝜑𝑥𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )

Proof

Step Hyp Ref Expression
1 rngcrescrhmALTV.u ( 𝜑𝑈𝑉 )
2 rngcrescrhmALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
3 rngcrescrhmALTV.r ( 𝜑𝑅 = ( Ring ∩ 𝑈 ) )
4 rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) )
5 3 eleq2d ( 𝜑 → ( 𝑥𝑅𝑥 ∈ ( Ring ∩ 𝑈 ) ) )
6 elinel1 ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring )
7 5 6 syl6bi ( 𝜑 → ( 𝑥𝑅𝑥 ∈ Ring ) )
8 7 imp ( ( 𝜑𝑥𝑅 ) → 𝑥 ∈ Ring )
9 eqid ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 )
10 9 idrhm ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) )
11 8 10 syl ( ( 𝜑𝑥𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) )
12 1 adantr ( ( 𝜑𝑥𝑅 ) → 𝑈𝑉 )
13 eqid ( RngCatALTV ‘ 𝑈 ) = ( RngCatALTV ‘ 𝑈 )
14 eqid ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ ( RngCatALTV ‘ 𝑈 ) )
15 13 14 rngccatidALTV ( 𝑈𝑉 → ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) )
16 simpr ( ( ( RngCatALTV ‘ 𝑈 ) ∈ Cat ∧ ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) )
17 12 15 16 3syl ( ( 𝜑𝑥𝑅 ) → ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑦 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) ↦ ( I ↾ ( Base ‘ 𝑦 ) ) ) )
18 fveq2 ( 𝑦 = 𝑥 → ( Base ‘ 𝑦 ) = ( Base ‘ 𝑥 ) )
19 18 reseq2d ( 𝑦 = 𝑥 → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) )
20 19 adantl ( ( ( 𝜑𝑥𝑅 ) ∧ 𝑦 = 𝑥 ) → ( I ↾ ( Base ‘ 𝑦 ) ) = ( I ↾ ( Base ‘ 𝑥 ) ) )
21 incom ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring )
22 3 21 eqtrdi ( 𝜑𝑅 = ( 𝑈 ∩ Ring ) )
23 22 eleq2d ( 𝜑 → ( 𝑥𝑅𝑥 ∈ ( 𝑈 ∩ Ring ) ) )
24 ringrng ( 𝑥 ∈ Ring → 𝑥 ∈ Rng )
25 24 anim2i ( ( 𝑥𝑈𝑥 ∈ Ring ) → ( 𝑥𝑈𝑥 ∈ Rng ) )
26 elin ( 𝑥 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑥𝑈𝑥 ∈ Ring ) )
27 elin ( 𝑥 ∈ ( 𝑈 ∩ Rng ) ↔ ( 𝑥𝑈𝑥 ∈ Rng ) )
28 25 26 27 3imtr4i ( 𝑥 ∈ ( 𝑈 ∩ Ring ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) )
29 23 28 syl6bi ( 𝜑 → ( 𝑥𝑅𝑥 ∈ ( 𝑈 ∩ Rng ) ) )
30 29 imp ( ( 𝜑𝑥𝑅 ) → 𝑥 ∈ ( 𝑈 ∩ Rng ) )
31 2 eqcomi ( RngCatALTV ‘ 𝑈 ) = 𝐶
32 31 fveq2i ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( Base ‘ 𝐶 )
33 2 32 1 rngcbasALTV ( 𝜑 → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) )
34 33 adantr ( ( 𝜑𝑥𝑅 ) → ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) )
35 30 34 eleqtrrd ( ( 𝜑𝑥𝑅 ) → 𝑥 ∈ ( Base ‘ ( RngCatALTV ‘ 𝑈 ) ) )
36 fvexd ( ( 𝜑𝑥𝑅 ) → ( Base ‘ 𝑥 ) ∈ V )
37 36 resiexd ( ( 𝜑𝑥𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ V )
38 17 20 35 37 fvmptd ( ( 𝜑𝑥𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) )
39 1 2 3 4 rhmsubcALTVlem2 ( ( 𝜑𝑥𝑅𝑥𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) )
40 39 3anidm23 ( ( 𝜑𝑥𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) )
41 11 38 40 3eltr4d ( ( 𝜑𝑥𝑅 ) → ( ( Id ‘ ( RngCatALTV ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )