| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngccatALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngccatidALTV.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  𝐵  =  ( Base ‘ 𝐶 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝑈  ∈  𝑉  →  ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝑈  ∈  𝑉  →  ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝐶  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  V ) | 
						
							| 8 |  | biid | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  ↔  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  𝑈  ∈  𝑉 ) | 
						
							| 10 | 1 2 9 | rngcbasALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  𝐵  =  ( 𝑈  ∩  Rng ) ) | 
						
							| 11 |  | eleq2 | ⊢ ( 𝐵  =  ( 𝑈  ∩  Rng )  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( 𝑈  ∩  Rng ) ) ) | 
						
							| 12 |  | elin | ⊢ ( 𝑥  ∈  ( 𝑈  ∩  Rng )  ↔  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  Rng ) ) | 
						
							| 13 | 12 | simprbi | ⊢ ( 𝑥  ∈  ( 𝑈  ∩  Rng )  →  𝑥  ∈  Rng ) | 
						
							| 14 | 11 13 | biimtrdi | ⊢ ( 𝐵  =  ( 𝑈  ∩  Rng )  →  ( 𝑥  ∈  𝐵  →  𝑥  ∈  Rng ) ) | 
						
							| 15 | 14 | com12 | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝐵  =  ( 𝑈  ∩  Rng )  →  𝑥  ∈  Rng ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  =  ( 𝑈  ∩  Rng )  →  𝑥  ∈  Rng ) ) | 
						
							| 17 | 10 16 | mpd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  Rng ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑥 )  =  ( Base ‘ 𝑥 ) | 
						
							| 19 | 18 | idrnghm | ⊢ ( 𝑥  ∈  Rng  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) | 
						
							| 20 | 17 19 | syl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 23 | 1 2 9 21 22 22 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 )  =  ( 𝑥  RngHom  𝑥 ) ) | 
						
							| 24 | 20 23 | eleqtrrd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  𝑥  ∈  𝐵 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 26 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 27 |  | simpl | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑤  ∈  𝐵 ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 33 |  | simp1 | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 34 | 27 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 35 | 30 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 36 | 1 2 33 21 34 35 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  =  ( 𝑤  RngHom  𝑥 ) ) | 
						
							| 37 | 36 | eleq2d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ↔  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) | 
						
							| 38 | 37 | biimpd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) | 
						
							| 39 | 38 | 3exp | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) ) ) | 
						
							| 40 | 39 | com14 | ⊢ ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) ) ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) ) ) | 
						
							| 42 | 41 | com13 | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) ) ) | 
						
							| 43 | 42 | 3imp | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) ) | 
						
							| 44 | 43 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) ) | 
						
							| 45 | 20 | expcom | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑈  ∈  𝑉  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) ) | 
						
							| 48 | 47 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) | 
						
							| 49 | 1 2 25 26 29 32 32 44 48 | rngccoALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( (  I   ↾  ( Base ‘ 𝑥 ) ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 ) ) | 
						
							| 50 |  | simpl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 51 |  | simprl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 52 |  | simprr | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 53 | 1 2 50 21 51 52 | elrngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 55 | 54 | com13 | ⊢ ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 56 |  | fcoi2 | ⊢ ( 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 )  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 57 | 55 56 | syl8 | ⊢ ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) ) ) | 
						
							| 58 | 57 | 3ad2ant1 | ⊢ ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) ) ) | 
						
							| 59 | 58 | com12 | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) ) ) | 
						
							| 60 | 59 | a1d | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) ) ) ) | 
						
							| 61 | 60 | 3imp | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) ) | 
						
							| 62 | 61 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( (  I   ↾  ( Base ‘ 𝑥 ) )  ∘  𝑓 )  =  𝑓 ) | 
						
							| 63 | 49 62 | eqtrd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( (  I   ↾  ( Base ‘ 𝑥 ) ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) | 
						
							| 64 |  | simp3 | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  𝑈  ∈  𝑉 ) | 
						
							| 65 | 30 | adantr | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 66 | 65 | 3ad2ant2 | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  𝑥  ∈  𝐵 ) | 
						
							| 67 |  | simprl | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 68 | 67 | 3ad2ant2 | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  𝑦  ∈  𝐵 ) | 
						
							| 69 | 46 | adantr | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) ) | 
						
							| 70 | 69 | a1i | ⊢ ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) ) ) | 
						
							| 71 | 70 | 3imp | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  (  I   ↾  ( Base ‘ 𝑥 ) )  ∈  ( 𝑥  RngHom  𝑥 ) ) | 
						
							| 72 |  | simpl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  𝑈  ∈  𝑉 ) | 
						
							| 73 | 65 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 74 | 67 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 75 | 1 2 72 21 73 74 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  =  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 76 | 75 | eleq2d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ↔  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 77 | 76 | biimpd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝑈  ∈  𝑉  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) | 
						
							| 79 | 78 | com13 | ⊢ ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) | 
						
							| 80 | 79 | 3imp | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 81 | 1 2 64 26 66 66 68 71 80 | rngccoALTV | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  ( 𝑔  ∘  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) | 
						
							| 82 | 1 2 72 21 73 74 | elrngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) | 
						
							| 83 | 82 | ex | ⊢ ( 𝑈  ∈  𝑉  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) | 
						
							| 84 | 83 | com13 | ⊢ ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) | 
						
							| 85 | 84 | 3imp | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) | 
						
							| 86 |  | fcoi1 | ⊢ ( 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 )  →  ( 𝑔  ∘  (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  ( 𝑔  ∘  (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) | 
						
							| 88 | 81 87 | eqtrd | ⊢ ( ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  ∧  𝑈  ∈  𝑉 )  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) | 
						
							| 89 | 88 | 3exp | ⊢ ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) ) ) | 
						
							| 90 | 89 | 3ad2ant2 | ⊢ ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( 𝑈  ∈  𝑉  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) ) ) | 
						
							| 91 | 90 | expdcom | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) ) ) ) | 
						
							| 92 | 91 | 3imp | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) ) | 
						
							| 93 | 92 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) (  I   ↾  ( Base ‘ 𝑥 ) ) )  =  𝑔 ) | 
						
							| 94 |  | simp2l | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 95 | 1 2 33 21 35 94 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  =  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 96 | 95 | eleq2d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ↔  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 97 | 96 | biimpd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 98 | 97 | 3exp | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) ) | 
						
							| 99 | 98 | com14 | ⊢ ( 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) ) | 
						
							| 100 | 99 | 3ad2ant2 | ⊢ ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) ) | 
						
							| 101 | 100 | com13 | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) ) ) | 
						
							| 102 | 101 | 3imp | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 103 | 102 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) ) | 
						
							| 104 |  | rnghmco | ⊢ ( ( 𝑔  ∈  ( 𝑥  RngHom  𝑦 )  ∧  𝑓  ∈  ( 𝑤  RngHom  𝑥 ) )  →  ( 𝑔  ∘  𝑓 )  ∈  ( 𝑤  RngHom  𝑦 ) ) | 
						
							| 105 | 103 44 104 | syl2anc | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( 𝑔  ∘  𝑓 )  ∈  ( 𝑤  RngHom  𝑦 ) ) | 
						
							| 106 |  | simp2l | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 108 | 1 2 25 26 29 32 107 44 103 | rngccoALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 )  =  ( 𝑔  ∘  𝑓 ) ) | 
						
							| 109 | 1 2 25 21 29 107 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑦 )  =  ( 𝑤  RngHom  𝑦 ) ) | 
						
							| 110 | 105 108 109 | 3eltr4d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( 𝑔 ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 )  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 111 |  | coass | ⊢ ( ( ℎ  ∘  𝑔 )  ∘  𝑓 )  =  ( ℎ  ∘  ( 𝑔  ∘  𝑓 ) ) | 
						
							| 112 |  | simp2r | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 114 |  | simp2r | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 115 | 1 2 33 21 94 114 | rngchomALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  =  ( 𝑦  RngHom  𝑧 ) ) | 
						
							| 116 | 115 | eleq2d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  ↔  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) | 
						
							| 117 | 116 | biimpd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 ) )  →  ( ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) | 
						
							| 118 | 117 | 3exp | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) ) ) | 
						
							| 119 | 118 | com14 | ⊢ ( ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) ) ) | 
						
							| 120 | 119 | 3ad2ant3 | ⊢ ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( 𝑈  ∈  𝑉  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) ) ) | 
						
							| 121 | 120 | com13 | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) )  →  ( 𝑈  ∈  𝑉  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) ) ) | 
						
							| 122 | 121 | 3imp | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) )  →  ( 𝑈  ∈  𝑉  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) ) | 
						
							| 123 | 122 | impcom | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ℎ  ∈  ( 𝑦  RngHom  𝑧 ) ) | 
						
							| 124 |  | rnghmco | ⊢ ( ( ℎ  ∈  ( 𝑦  RngHom  𝑧 )  ∧  𝑔  ∈  ( 𝑥  RngHom  𝑦 ) )  →  ( ℎ  ∘  𝑔 )  ∈  ( 𝑥  RngHom  𝑧 ) ) | 
						
							| 125 | 123 103 124 | syl2anc | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ℎ  ∘  𝑔 )  ∈  ( 𝑥  RngHom  𝑧 ) ) | 
						
							| 126 | 1 2 25 26 29 32 113 44 125 | rngccoALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ( ℎ  ∘  𝑔 ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( ( ℎ  ∘  𝑔 )  ∘  𝑓 ) ) | 
						
							| 127 | 1 2 25 26 29 107 113 105 123 | rngccoALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ℎ ( 〈 𝑤 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔  ∘  𝑓 ) )  =  ( ℎ  ∘  ( 𝑔  ∘  𝑓 ) ) ) | 
						
							| 128 | 111 126 127 | 3eqtr4a | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ( ℎ  ∘  𝑔 ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( ℎ ( 〈 𝑤 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔  ∘  𝑓 ) ) ) | 
						
							| 129 | 1 2 25 26 32 107 113 103 123 | rngccoALTV | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ℎ ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 )  =  ( ℎ  ∘  𝑔 ) ) | 
						
							| 130 | 129 | oveq1d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ( ℎ ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( ( ℎ  ∘  𝑔 ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) | 
						
							| 131 | 108 | oveq2d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ℎ ( 〈 𝑤 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) )  =  ( ℎ ( 〈 𝑤 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔  ∘  𝑓 ) ) ) | 
						
							| 132 | 128 130 131 | 3eqtr4d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( ( 𝑤  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑓  ∈  ( 𝑤 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  ∧  ℎ  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑧 ) ) ) )  →  ( ( ℎ ( 〈 𝑥 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 )  =  ( ℎ ( 〈 𝑤 ,  𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ) | 
						
							| 133 | 3 4 5 7 8 24 63 93 110 132 | iscatd2 | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐶  ∈  Cat  ∧  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  (  I   ↾  ( Base ‘ 𝑥 ) ) ) ) ) |