Metamath Proof Explorer


Theorem rnghmco

Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion rnghmco ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 RngHomo 𝑈 ) )

Proof

Step Hyp Ref Expression
1 rnghmrcl ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → ( 𝑇 ∈ Rng ∧ 𝑈 ∈ Rng ) )
2 1 simprd ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝑈 ∈ Rng )
3 rnghmrcl ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) )
4 3 simpld ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝑆 ∈ Rng )
5 2 4 anim12ci ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝑆 ∈ Rng ∧ 𝑈 ∈ Rng ) )
6 rnghmghm ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) )
7 rnghmghm ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) )
8 ghmco ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) )
9 6 7 8 syl2an ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) )
10 eqid ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 )
11 eqid ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 )
12 10 11 rnghmmgmhm ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MgmHom ( mulGrp ‘ 𝑈 ) ) )
13 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
14 13 10 rnghmmgmhm ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) )
15 mgmhmco ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) → ( 𝐹𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) )
16 12 14 15 syl2an ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) )
17 9 16 jca ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) )
18 13 11 isrnghmmul ( ( 𝐹𝐺 ) ∈ ( 𝑆 RngHomo 𝑈 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑈 ∈ Rng ) ∧ ( ( 𝐹𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) ) )
19 5 17 18 sylanbrc ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹𝐺 ) ∈ ( 𝑆 RngHomo 𝑈 ) )