Step |
Hyp |
Ref |
Expression |
1 |
|
rnghmrcl |
⊢ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → ( 𝑇 ∈ Rng ∧ 𝑈 ∈ Rng ) ) |
2 |
1
|
simprd |
⊢ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝑈 ∈ Rng ) |
3 |
|
rnghmrcl |
⊢ ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → ( 𝑆 ∈ Rng ∧ 𝑇 ∈ Rng ) ) |
4 |
3
|
simpld |
⊢ ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝑆 ∈ Rng ) |
5 |
2 4
|
anim12ci |
⊢ ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝑆 ∈ Rng ∧ 𝑈 ∈ Rng ) ) |
6 |
|
rnghmghm |
⊢ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ) |
7 |
|
rnghmghm |
⊢ ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
8 |
|
ghmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑇 ) = ( mulGrp ‘ 𝑇 ) |
11 |
|
eqid |
⊢ ( mulGrp ‘ 𝑈 ) = ( mulGrp ‘ 𝑈 ) |
12 |
10 11
|
rnghmmgmhm |
⊢ ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) |
13 |
|
eqid |
⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) |
14 |
13 10
|
rnghmmgmhm |
⊢ ( 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) → 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) |
15 |
|
mgmhmco |
⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑇 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ∧ 𝐺 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑇 ) ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) |
16 |
12 14 15
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) |
17 |
9 16
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) ) |
18 |
13 11
|
isrnghmmul |
⊢ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RngHomo 𝑈 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑈 ∈ Rng ) ∧ ( ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ∧ ( 𝐹 ∘ 𝐺 ) ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑈 ) ) ) ) ) |
19 |
5 17 18
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑇 RngHomo 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 RngHomo 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 RngHomo 𝑈 ) ) |