Metamath Proof Explorer


Theorem rnghmco

Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion rnghmco
|- ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( F o. G ) e. ( S RngHomo U ) )

Proof

Step Hyp Ref Expression
1 rnghmrcl
 |-  ( F e. ( T RngHomo U ) -> ( T e. Rng /\ U e. Rng ) )
2 1 simprd
 |-  ( F e. ( T RngHomo U ) -> U e. Rng )
3 rnghmrcl
 |-  ( G e. ( S RngHomo T ) -> ( S e. Rng /\ T e. Rng ) )
4 3 simpld
 |-  ( G e. ( S RngHomo T ) -> S e. Rng )
5 2 4 anim12ci
 |-  ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( S e. Rng /\ U e. Rng ) )
6 rnghmghm
 |-  ( F e. ( T RngHomo U ) -> F e. ( T GrpHom U ) )
7 rnghmghm
 |-  ( G e. ( S RngHomo T ) -> G e. ( S GrpHom T ) )
8 ghmco
 |-  ( ( F e. ( T GrpHom U ) /\ G e. ( S GrpHom T ) ) -> ( F o. G ) e. ( S GrpHom U ) )
9 6 7 8 syl2an
 |-  ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( F o. G ) e. ( S GrpHom U ) )
10 eqid
 |-  ( mulGrp ` T ) = ( mulGrp ` T )
11 eqid
 |-  ( mulGrp ` U ) = ( mulGrp ` U )
12 10 11 rnghmmgmhm
 |-  ( F e. ( T RngHomo U ) -> F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) )
13 eqid
 |-  ( mulGrp ` S ) = ( mulGrp ` S )
14 13 10 rnghmmgmhm
 |-  ( G e. ( S RngHomo T ) -> G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) )
15 mgmhmco
 |-  ( ( F e. ( ( mulGrp ` T ) MgmHom ( mulGrp ` U ) ) /\ G e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` T ) ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) )
16 12 14 15 syl2an
 |-  ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) )
17 9 16 jca
 |-  ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) )
18 13 11 isrnghmmul
 |-  ( ( F o. G ) e. ( S RngHomo U ) <-> ( ( S e. Rng /\ U e. Rng ) /\ ( ( F o. G ) e. ( S GrpHom U ) /\ ( F o. G ) e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` U ) ) ) ) )
19 5 17 18 sylanbrc
 |-  ( ( F e. ( T RngHomo U ) /\ G e. ( S RngHomo T ) ) -> ( F o. G ) e. ( S RngHomo U ) )