Metamath Proof Explorer


Theorem rnghmco

Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020)

Ref Expression
Assertion rnghmco F T RngHomo U G S RngHomo T F G S RngHomo U

Proof

Step Hyp Ref Expression
1 rnghmrcl F T RngHomo U T Rng U Rng
2 1 simprd F T RngHomo U U Rng
3 rnghmrcl G S RngHomo T S Rng T Rng
4 3 simpld G S RngHomo T S Rng
5 2 4 anim12ci F T RngHomo U G S RngHomo T S Rng U Rng
6 rnghmghm F T RngHomo U F T GrpHom U
7 rnghmghm G S RngHomo T G S GrpHom T
8 ghmco F T GrpHom U G S GrpHom T F G S GrpHom U
9 6 7 8 syl2an F T RngHomo U G S RngHomo T F G S GrpHom U
10 eqid mulGrp T = mulGrp T
11 eqid mulGrp U = mulGrp U
12 10 11 rnghmmgmhm F T RngHomo U F mulGrp T MgmHom mulGrp U
13 eqid mulGrp S = mulGrp S
14 13 10 rnghmmgmhm G S RngHomo T G mulGrp S MgmHom mulGrp T
15 mgmhmco F mulGrp T MgmHom mulGrp U G mulGrp S MgmHom mulGrp T F G mulGrp S MgmHom mulGrp U
16 12 14 15 syl2an F T RngHomo U G S RngHomo T F G mulGrp S MgmHom mulGrp U
17 9 16 jca F T RngHomo U G S RngHomo T F G S GrpHom U F G mulGrp S MgmHom mulGrp U
18 13 11 isrnghmmul F G S RngHomo U S Rng U Rng F G S GrpHom U F G mulGrp S MgmHom mulGrp U
19 5 17 18 sylanbrc F T RngHomo U G S RngHomo T F G S RngHomo U