Metamath Proof Explorer


Theorem idrnghm

Description: The identity homomorphism on a non-unital ring. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypothesis idrnghm.b B = Base R
Assertion idrnghm R Rng I B R RngHomo R

Proof

Step Hyp Ref Expression
1 idrnghm.b B = Base R
2 id R Rng R Rng
3 2 2 jca R Rng R Rng R Rng
4 rngabl R Rng R Abel
5 ablgrp R Abel R Grp
6 1 idghm R Grp I B R GrpHom R
7 4 5 6 3syl R Rng I B R GrpHom R
8 eqid mulGrp R = mulGrp R
9 8 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
10 sgrpmgm Could not format ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) : No typesetting found for |- ( ( mulGrp ` R ) e. Smgrp -> ( mulGrp ` R ) e. Mgm ) with typecode |-
11 8 1 mgpbas B = Base mulGrp R
12 11 idmgmhm mulGrp R Mgm I B mulGrp R MgmHom mulGrp R
13 9 10 12 3syl R Rng I B mulGrp R MgmHom mulGrp R
14 7 13 jca R Rng I B R GrpHom R I B mulGrp R MgmHom mulGrp R
15 8 8 isrnghmmul I B R RngHomo R R Rng R Rng I B R GrpHom R I B mulGrp R MgmHom mulGrp R
16 3 14 15 sylanbrc R Rng I B R RngHomo R