Step |
Hyp |
Ref |
Expression |
1 |
|
rngcbasALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
2 |
|
rngcbasALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
rngcbasALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
rngchomfvalALTV.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
rngchomALTV.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
rngchomALTV.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
1 2 3 4 5 6
|
rngchomALTV |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) ) |
8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngHomo 𝑌 ) ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
9 10
|
rnghmf |
⊢ ( 𝐹 ∈ ( 𝑋 RngHomo 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
12 |
8 11
|
syl6bi |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |