| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcbasALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngcbasALTV.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | rngcbasALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 4 |  | rngchomfvalALTV.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 |  | rngchomALTV.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | rngchomALTV.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 4 5 6 | rngchomALTV | ⊢ ( 𝜑  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋  RngHom  𝑌 ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ↔  𝐹  ∈  ( 𝑋  RngHom  𝑌 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 11 | 9 10 | rnghmf | ⊢ ( 𝐹  ∈  ( 𝑋  RngHom  𝑌 )  →  𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 12 | 8 11 | biimtrdi | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  →  𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |