| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcbasALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 2 |  | rngcbasALTV.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | rngcbasALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 4 |  | rngchomfvalALTV.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 5 |  | rngchomALTV.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | rngchomALTV.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 4 | rngchomfvalALTV | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  ( 𝑥  RngHom  𝑦 ) ) ) | 
						
							| 8 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑥  RngHom  𝑦 )  =  ( 𝑋  RngHom  𝑌 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑥  RngHom  𝑦 )  =  ( 𝑋  RngHom  𝑌 ) ) | 
						
							| 10 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑋  RngHom  𝑌 )  ∈  V ) | 
						
							| 11 | 7 9 5 6 10 | ovmpod | ⊢ ( 𝜑  →  ( 𝑋 𝐻 𝑌 )  =  ( 𝑋  RngHom  𝑌 ) ) |