Metamath Proof Explorer


Theorem rngchomALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
rngcbasALTV.b 𝐵 = ( Base ‘ 𝐶 )
rngcbasALTV.u ( 𝜑𝑈𝑉 )
rngchomfvalALTV.h 𝐻 = ( Hom ‘ 𝐶 )
rngchomALTV.x ( 𝜑𝑋𝐵 )
rngchomALTV.y ( 𝜑𝑌𝐵 )
Assertion rngchomALTV ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) )

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
2 rngcbasALTV.b 𝐵 = ( Base ‘ 𝐶 )
3 rngcbasALTV.u ( 𝜑𝑈𝑉 )
4 rngchomfvalALTV.h 𝐻 = ( Hom ‘ 𝐶 )
5 rngchomALTV.x ( 𝜑𝑋𝐵 )
6 rngchomALTV.y ( 𝜑𝑌𝐵 )
7 1 2 3 4 rngchomfvalALTV ( 𝜑𝐻 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) )
8 oveq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 RngHomo 𝑦 ) = ( 𝑋 RngHomo 𝑌 ) )
9 8 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 RngHomo 𝑦 ) = ( 𝑋 RngHomo 𝑌 ) )
10 ovexd ( 𝜑 → ( 𝑋 RngHomo 𝑌 ) ∈ V )
11 7 9 5 6 10 ovmpod ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) )