Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcbasALTV.c | |- C = ( RngCatALTV ` U ) |
|
rngcbasALTV.b | |- B = ( Base ` C ) |
||
rngcbasALTV.u | |- ( ph -> U e. V ) |
||
rngchomfvalALTV.h | |- H = ( Hom ` C ) |
||
rngchomALTV.x | |- ( ph -> X e. B ) |
||
rngchomALTV.y | |- ( ph -> Y e. B ) |
||
Assertion | rngchomALTV | |- ( ph -> ( X H Y ) = ( X RngHomo Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | |- C = ( RngCatALTV ` U ) |
|
2 | rngcbasALTV.b | |- B = ( Base ` C ) |
|
3 | rngcbasALTV.u | |- ( ph -> U e. V ) |
|
4 | rngchomfvalALTV.h | |- H = ( Hom ` C ) |
|
5 | rngchomALTV.x | |- ( ph -> X e. B ) |
|
6 | rngchomALTV.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 3 4 | rngchomfvalALTV | |- ( ph -> H = ( x e. B , y e. B |-> ( x RngHomo y ) ) ) |
8 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x RngHomo y ) = ( X RngHomo Y ) ) |
|
9 | 8 | adantl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x RngHomo y ) = ( X RngHomo Y ) ) |
10 | ovexd | |- ( ph -> ( X RngHomo Y ) e. _V ) |
|
11 | 7 9 5 6 10 | ovmpod | |- ( ph -> ( X H Y ) = ( X RngHomo Y ) ) |