Metamath Proof Explorer


Theorem rngchomALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c
|- C = ( RngCatALTV ` U )
rngcbasALTV.b
|- B = ( Base ` C )
rngcbasALTV.u
|- ( ph -> U e. V )
rngchomfvalALTV.h
|- H = ( Hom ` C )
rngchomALTV.x
|- ( ph -> X e. B )
rngchomALTV.y
|- ( ph -> Y e. B )
Assertion rngchomALTV
|- ( ph -> ( X H Y ) = ( X RngHomo Y ) )

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c
 |-  C = ( RngCatALTV ` U )
2 rngcbasALTV.b
 |-  B = ( Base ` C )
3 rngcbasALTV.u
 |-  ( ph -> U e. V )
4 rngchomfvalALTV.h
 |-  H = ( Hom ` C )
5 rngchomALTV.x
 |-  ( ph -> X e. B )
6 rngchomALTV.y
 |-  ( ph -> Y e. B )
7 1 2 3 4 rngchomfvalALTV
 |-  ( ph -> H = ( x e. B , y e. B |-> ( x RngHomo y ) ) )
8 oveq12
 |-  ( ( x = X /\ y = Y ) -> ( x RngHomo y ) = ( X RngHomo Y ) )
9 8 adantl
 |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x RngHomo y ) = ( X RngHomo Y ) )
10 ovexd
 |-  ( ph -> ( X RngHomo Y ) e. _V )
11 7 9 5 6 10 ovmpod
 |-  ( ph -> ( X H Y ) = ( X RngHomo Y ) )