| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcbasALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 2 |  | rngcbasALTV.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | rngcbasALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | rngchomfvalALTV.h |  |-  H = ( Hom ` C ) | 
						
							| 5 |  | rngchomALTV.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | rngchomALTV.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 | 1 2 3 4 | rngchomfvalALTV |  |-  ( ph -> H = ( x e. B , y e. B |-> ( x RngHom y ) ) ) | 
						
							| 8 |  | oveq12 |  |-  ( ( x = X /\ y = Y ) -> ( x RngHom y ) = ( X RngHom Y ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x RngHom y ) = ( X RngHom Y ) ) | 
						
							| 10 |  | ovexd |  |-  ( ph -> ( X RngHom Y ) e. _V ) | 
						
							| 11 | 7 9 5 6 10 | ovmpod |  |-  ( ph -> ( X H Y ) = ( X RngHom Y ) ) |