Metamath Proof Explorer


Theorem rngchomfvalALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c
|- C = ( RngCatALTV ` U )
rngcbasALTV.b
|- B = ( Base ` C )
rngcbasALTV.u
|- ( ph -> U e. V )
rngchomfvalALTV.h
|- H = ( Hom ` C )
Assertion rngchomfvalALTV
|- ( ph -> H = ( x e. B , y e. B |-> ( x RngHomo y ) ) )

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c
 |-  C = ( RngCatALTV ` U )
2 rngcbasALTV.b
 |-  B = ( Base ` C )
3 rngcbasALTV.u
 |-  ( ph -> U e. V )
4 rngchomfvalALTV.h
 |-  H = ( Hom ` C )
5 1 2 3 rngcbasALTV
 |-  ( ph -> B = ( U i^i Rng ) )
6 eqidd
 |-  ( ph -> ( x e. B , y e. B |-> ( x RngHomo y ) ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) )
7 eqidd
 |-  ( ph -> ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) )
8 1 3 5 6 7 rngcvalALTV
 |-  ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } )
9 8 fveq2d
 |-  ( ph -> ( Hom ` C ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } ) )
10 4 9 eqtrid
 |-  ( ph -> H = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } ) )
11 2 fvexi
 |-  B e. _V
12 11 11 mpoex
 |-  ( x e. B , y e. B |-> ( x RngHomo y ) ) e. _V
13 catstr
 |-  { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } Struct <. 1 , ; 1 5 >.
14 homid
 |-  Hom = Slot ( Hom ` ndx )
15 snsstp2
 |-  { <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. }
16 13 14 15 strfv
 |-  ( ( x e. B , y e. B |-> ( x RngHomo y ) ) e. _V -> ( x e. B , y e. B |-> ( x RngHomo y ) ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } ) )
17 12 16 mp1i
 |-  ( ph -> ( x e. B , y e. B |-> ( x RngHomo y ) ) = ( Hom ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( x e. B , y e. B |-> ( x RngHomo y ) ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( f e. ( ( 2nd ` v ) RngHomo z ) , g e. ( ( 1st ` v ) RngHomo ( 2nd ` v ) ) |-> ( f o. g ) ) ) >. } ) )
18 10 17 eqtr4d
 |-  ( ph -> H = ( x e. B , y e. B |-> ( x RngHomo y ) ) )