Metamath Proof Explorer


Theorem rngchomALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C = RngCatALTV U
rngcbasALTV.b B = Base C
rngcbasALTV.u φ U V
rngchomfvalALTV.h H = Hom C
rngchomALTV.x φ X B
rngchomALTV.y φ Y B
Assertion rngchomALTV φ X H Y = X RngHomo Y

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C = RngCatALTV U
2 rngcbasALTV.b B = Base C
3 rngcbasALTV.u φ U V
4 rngchomfvalALTV.h H = Hom C
5 rngchomALTV.x φ X B
6 rngchomALTV.y φ Y B
7 1 2 3 4 rngchomfvalALTV φ H = x B , y B x RngHomo y
8 oveq12 x = X y = Y x RngHomo y = X RngHomo Y
9 8 adantl φ x = X y = Y x RngHomo y = X RngHomo Y
10 ovexd φ X RngHomo Y V
11 7 9 5 6 10 ovmpod φ X H Y = X RngHomo Y