Description: A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcbasALTV.c | |- C = ( RngCatALTV ` U ) |
|
rngcbasALTV.b | |- B = ( Base ` C ) |
||
rngcbasALTV.u | |- ( ph -> U e. V ) |
||
rngchomfvalALTV.h | |- H = ( Hom ` C ) |
||
rngchomALTV.x | |- ( ph -> X e. B ) |
||
rngchomALTV.y | |- ( ph -> Y e. B ) |
||
Assertion | elrngchomALTV | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | |- C = ( RngCatALTV ` U ) |
|
2 | rngcbasALTV.b | |- B = ( Base ` C ) |
|
3 | rngcbasALTV.u | |- ( ph -> U e. V ) |
|
4 | rngchomfvalALTV.h | |- H = ( Hom ` C ) |
|
5 | rngchomALTV.x | |- ( ph -> X e. B ) |
|
6 | rngchomALTV.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 3 4 5 6 | rngchomALTV | |- ( ph -> ( X H Y ) = ( X RngHomo Y ) ) |
8 | 7 | eleq2d | |- ( ph -> ( F e. ( X H Y ) <-> F e. ( X RngHomo Y ) ) ) |
9 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
11 | 9 10 | rnghmf | |- ( F e. ( X RngHomo Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
12 | 8 11 | syl6bi | |- ( ph -> ( F e. ( X H Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) ) |