Metamath Proof Explorer


Theorem rngchomrnghmresALTV

Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) as restriction of the non-unital ring homomorphisms. (Contributed by AV, 2-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngchomrnghmresALTV.c C = RngCatALTV U
rngchomrnghmresALTV.b B = Rng U
rngchomrnghmresALTV.u φ U V
rngchomrnghmresALTV.f F = Hom 𝑓 C
Assertion rngchomrnghmresALTV φ F = RngHomo B × B

Proof

Step Hyp Ref Expression
1 rngchomrnghmresALTV.c C = RngCatALTV U
2 rngchomrnghmresALTV.b B = Rng U
3 rngchomrnghmresALTV.u φ U V
4 rngchomrnghmresALTV.f F = Hom 𝑓 C
5 eqid Base C = Base C
6 1 5 3 rngcbasALTV φ Base C = U Rng
7 inss2 U Rng Rng
8 6 7 eqsstrdi φ Base C Rng
9 resmpo Base C Rng Base C Rng x Rng , y Rng x RngHomo y Base C × Base C = x Base C , y Base C x RngHomo y
10 8 8 9 syl2anc φ x Rng , y Rng x RngHomo y Base C × Base C = x Base C , y Base C x RngHomo y
11 df-rnghomo RngHomo = r Rng , s Rng Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
12 ovex w v V
13 12 rabex f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
14 13 csbex Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
15 14 csbex Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
16 11 15 fnmpoi RngHomo Fn Rng × Rng
17 16 a1i φ RngHomo Fn Rng × Rng
18 fnov RngHomo Fn Rng × Rng RngHomo = x Rng , y Rng x RngHomo y
19 17 18 sylib φ RngHomo = x Rng , y Rng x RngHomo y
20 incom U Rng = Rng U
21 20 a1i φ U Rng = Rng U
22 2 a1i φ B = Rng U
23 21 6 22 3eqtr4rd φ B = Base C
24 23 sqxpeqd φ B × B = Base C × Base C
25 19 24 reseq12d φ RngHomo B × B = x Rng , y Rng x RngHomo y Base C × Base C
26 1 5 3 4 rngchomffvalALTV φ F = x Base C , y Base C x RngHomo y
27 10 25 26 3eqtr4rd φ F = RngHomo B × B