Metamath Proof Explorer


Theorem rngchomffvalALTV

Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngchomffvalALTV.c C = RngCatALTV U
rngchomffvalALTV.b B = Base C
rngchomffvalALTV.u φ U V
rngchomffvalALTV.h F = Hom 𝑓 C
Assertion rngchomffvalALTV φ F = x B , y B x RngHomo y

Proof

Step Hyp Ref Expression
1 rngchomffvalALTV.c C = RngCatALTV U
2 rngchomffvalALTV.b B = Base C
3 rngchomffvalALTV.u φ U V
4 rngchomffvalALTV.h F = Hom 𝑓 C
5 eqid Hom C = Hom C
6 1 2 3 5 rngchomfvalALTV φ Hom C = x B , y B x RngHomo y
7 eqid x B , y B x RngHomo y = x B , y B x RngHomo y
8 ovex x RngHomo y V
9 7 8 fnmpoi x B , y B x RngHomo y Fn B × B
10 fneq1 Hom C = x B , y B x RngHomo y Hom C Fn B × B x B , y B x RngHomo y Fn B × B
11 9 10 mpbiri Hom C = x B , y B x RngHomo y Hom C Fn B × B
12 4 2 5 fnhomeqhomf Hom C Fn B × B F = Hom C
13 6 11 12 3syl φ F = Hom C
14 13 6 eqtrd φ F = x B , y B x RngHomo y