Metamath Proof Explorer


Theorem rngchomffvalALTV

Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngchomffvalALTV.c
|- C = ( RngCatALTV ` U )
rngchomffvalALTV.b
|- B = ( Base ` C )
rngchomffvalALTV.u
|- ( ph -> U e. V )
rngchomffvalALTV.h
|- F = ( Homf ` C )
Assertion rngchomffvalALTV
|- ( ph -> F = ( x e. B , y e. B |-> ( x RngHomo y ) ) )

Proof

Step Hyp Ref Expression
1 rngchomffvalALTV.c
 |-  C = ( RngCatALTV ` U )
2 rngchomffvalALTV.b
 |-  B = ( Base ` C )
3 rngchomffvalALTV.u
 |-  ( ph -> U e. V )
4 rngchomffvalALTV.h
 |-  F = ( Homf ` C )
5 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
6 1 2 3 5 rngchomfvalALTV
 |-  ( ph -> ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) )
7 eqid
 |-  ( x e. B , y e. B |-> ( x RngHomo y ) ) = ( x e. B , y e. B |-> ( x RngHomo y ) )
8 ovex
 |-  ( x RngHomo y ) e. _V
9 7 8 fnmpoi
 |-  ( x e. B , y e. B |-> ( x RngHomo y ) ) Fn ( B X. B )
10 fneq1
 |-  ( ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) -> ( ( Hom ` C ) Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( x RngHomo y ) ) Fn ( B X. B ) ) )
11 9 10 mpbiri
 |-  ( ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) -> ( Hom ` C ) Fn ( B X. B ) )
12 4 2 5 fnhomeqhomf
 |-  ( ( Hom ` C ) Fn ( B X. B ) -> F = ( Hom ` C ) )
13 6 11 12 3syl
 |-  ( ph -> F = ( Hom ` C ) )
14 13 6 eqtrd
 |-  ( ph -> F = ( x e. B , y e. B |-> ( x RngHomo y ) ) )