Step |
Hyp |
Ref |
Expression |
1 |
|
rngchomffvalALTV.c |
|- C = ( RngCatALTV ` U ) |
2 |
|
rngchomffvalALTV.b |
|- B = ( Base ` C ) |
3 |
|
rngchomffvalALTV.u |
|- ( ph -> U e. V ) |
4 |
|
rngchomffvalALTV.h |
|- F = ( Homf ` C ) |
5 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
6 |
1 2 3 5
|
rngchomfvalALTV |
|- ( ph -> ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) ) |
7 |
|
eqid |
|- ( x e. B , y e. B |-> ( x RngHomo y ) ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) |
8 |
|
ovex |
|- ( x RngHomo y ) e. _V |
9 |
7 8
|
fnmpoi |
|- ( x e. B , y e. B |-> ( x RngHomo y ) ) Fn ( B X. B ) |
10 |
|
fneq1 |
|- ( ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) -> ( ( Hom ` C ) Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( x RngHomo y ) ) Fn ( B X. B ) ) ) |
11 |
9 10
|
mpbiri |
|- ( ( Hom ` C ) = ( x e. B , y e. B |-> ( x RngHomo y ) ) -> ( Hom ` C ) Fn ( B X. B ) ) |
12 |
4 2 5
|
fnhomeqhomf |
|- ( ( Hom ` C ) Fn ( B X. B ) -> F = ( Hom ` C ) ) |
13 |
6 11 12
|
3syl |
|- ( ph -> F = ( Hom ` C ) ) |
14 |
13 6
|
eqtrd |
|- ( ph -> F = ( x e. B , y e. B |-> ( x RngHomo y ) ) ) |