| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngchomffvalALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
| 2 |
|
rngchomffvalALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
rngchomffvalALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 4 |
|
rngchomffvalALTV.h |
⊢ 𝐹 = ( Homf ‘ 𝐶 ) |
| 5 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 6 |
1 2 3 5
|
rngchomfvalALTV |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) |
| 8 |
|
ovex |
⊢ ( 𝑥 RngHom 𝑦 ) ∈ V |
| 9 |
7 8
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) |
| 10 |
|
fneq1 |
⊢ ( ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) → ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
| 11 |
9 10
|
mpbiri |
⊢ ( ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) → ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
| 12 |
4 2 5
|
fnhomeqhomf |
⊢ ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → 𝐹 = ( Hom ‘ 𝐶 ) ) |
| 13 |
6 11 12
|
3syl |
⊢ ( 𝜑 → 𝐹 = ( Hom ‘ 𝐶 ) ) |
| 14 |
13 6
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RngHom 𝑦 ) ) ) |