Metamath Proof Explorer


Theorem rngchomffvalALTV

Description: The value of the functionalized Hom-set operation in the category of non-unital rings (in a universe) in maps-to notation for an operation. (Contributed by AV, 1-Mar-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngchomffvalALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
rngchomffvalALTV.b 𝐵 = ( Base ‘ 𝐶 )
rngchomffvalALTV.u ( 𝜑𝑈𝑉 )
rngchomffvalALTV.h 𝐹 = ( Homf𝐶 )
Assertion rngchomffvalALTV ( 𝜑𝐹 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 rngchomffvalALTV.c 𝐶 = ( RngCatALTV ‘ 𝑈 )
2 rngchomffvalALTV.b 𝐵 = ( Base ‘ 𝐶 )
3 rngchomffvalALTV.u ( 𝜑𝑈𝑉 )
4 rngchomffvalALTV.h 𝐹 = ( Homf𝐶 )
5 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
6 1 2 3 5 rngchomfvalALTV ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) )
7 eqid ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) )
8 ovex ( 𝑥 RngHomo 𝑦 ) ∈ V
9 7 8 fnmpoi ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) Fn ( 𝐵 × 𝐵 )
10 fneq1 ( ( Hom ‘ 𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) → ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ↔ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) Fn ( 𝐵 × 𝐵 ) ) )
11 9 10 mpbiri ( ( Hom ‘ 𝐶 ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) → ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) )
12 4 2 5 fnhomeqhomf ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → 𝐹 = ( Hom ‘ 𝐶 ) )
13 6 11 12 3syl ( 𝜑𝐹 = ( Hom ‘ 𝐶 ) )
14 13 6 eqtrd ( 𝜑𝐹 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 RngHomo 𝑦 ) ) )