Step |
Hyp |
Ref |
Expression |
1 |
|
ringdi22.1 |
|- B = ( Base ` R ) |
2 |
|
ringdi22.2 |
|- .+ = ( +g ` R ) |
3 |
|
ringdi22.3 |
|- .x. = ( .r ` R ) |
4 |
|
ringdi22.4 |
|- ( ph -> R e. Ring ) |
5 |
|
ringdi22.5 |
|- ( ph -> X e. B ) |
6 |
|
ringdi22.6 |
|- ( ph -> Y e. B ) |
7 |
|
ringdi22.7 |
|- ( ph -> Z e. B ) |
8 |
|
ringdi22.8 |
|- ( ph -> T e. B ) |
9 |
4
|
ringgrpd |
|- ( ph -> R e. Grp ) |
10 |
1 2 9 5 6
|
grpcld |
|- ( ph -> ( X .+ Y ) e. B ) |
11 |
1 2 3 4 10 7 8
|
ringdid |
|- ( ph -> ( ( X .+ Y ) .x. ( Z .+ T ) ) = ( ( ( X .+ Y ) .x. Z ) .+ ( ( X .+ Y ) .x. T ) ) ) |
12 |
1 2 3 4 5 6 7
|
ringdird |
|- ( ph -> ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) |
13 |
1 2 3 4 5 6 8
|
ringdird |
|- ( ph -> ( ( X .+ Y ) .x. T ) = ( ( X .x. T ) .+ ( Y .x. T ) ) ) |
14 |
12 13
|
oveq12d |
|- ( ph -> ( ( ( X .+ Y ) .x. Z ) .+ ( ( X .+ Y ) .x. T ) ) = ( ( ( X .x. Z ) .+ ( Y .x. Z ) ) .+ ( ( X .x. T ) .+ ( Y .x. T ) ) ) ) |
15 |
11 14
|
eqtrd |
|- ( ph -> ( ( X .+ Y ) .x. ( Z .+ T ) ) = ( ( ( X .x. Z ) .+ ( Y .x. Z ) ) .+ ( ( X .x. T ) .+ ( Y .x. T ) ) ) ) |