Metamath Proof Explorer


Theorem ringdi22

Description: Expand the product of two sums in a ring. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses ringdi22.1 𝐵 = ( Base ‘ 𝑅 )
ringdi22.2 + = ( +g𝑅 )
ringdi22.3 · = ( .r𝑅 )
ringdi22.4 ( 𝜑𝑅 ∈ Ring )
ringdi22.5 ( 𝜑𝑋𝐵 )
ringdi22.6 ( 𝜑𝑌𝐵 )
ringdi22.7 ( 𝜑𝑍𝐵 )
ringdi22.8 ( 𝜑𝑇𝐵 )
Assertion ringdi22 ( 𝜑 → ( ( 𝑋 + 𝑌 ) · ( 𝑍 + 𝑇 ) ) = ( ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) + ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) )

Proof

Step Hyp Ref Expression
1 ringdi22.1 𝐵 = ( Base ‘ 𝑅 )
2 ringdi22.2 + = ( +g𝑅 )
3 ringdi22.3 · = ( .r𝑅 )
4 ringdi22.4 ( 𝜑𝑅 ∈ Ring )
5 ringdi22.5 ( 𝜑𝑋𝐵 )
6 ringdi22.6 ( 𝜑𝑌𝐵 )
7 ringdi22.7 ( 𝜑𝑍𝐵 )
8 ringdi22.8 ( 𝜑𝑇𝐵 )
9 4 ringgrpd ( 𝜑𝑅 ∈ Grp )
10 1 2 9 5 6 grpcld ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
11 1 2 3 4 10 7 8 ringdid ( 𝜑 → ( ( 𝑋 + 𝑌 ) · ( 𝑍 + 𝑇 ) ) = ( ( ( 𝑋 + 𝑌 ) · 𝑍 ) + ( ( 𝑋 + 𝑌 ) · 𝑇 ) ) )
12 1 2 3 4 5 6 7 ringdird ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) )
13 1 2 3 4 5 6 8 ringdird ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑇 ) = ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) )
14 12 13 oveq12d ( 𝜑 → ( ( ( 𝑋 + 𝑌 ) · 𝑍 ) + ( ( 𝑋 + 𝑌 ) · 𝑇 ) ) = ( ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) + ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) )
15 11 14 eqtrd ( 𝜑 → ( ( 𝑋 + 𝑌 ) · ( 𝑍 + 𝑇 ) ) = ( ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) + ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) )