| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringdi22.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ringdi22.2 |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
ringdi22.3 |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
ringdi22.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
ringdi22.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
ringdi22.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
ringdi22.7 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 8 |
|
ringdi22.8 |
⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
| 9 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 10 |
1 2 9 5 6
|
grpcld |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 11 |
1 2 3 4 10 7 8
|
ringdid |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · ( 𝑍 + 𝑇 ) ) = ( ( ( 𝑋 + 𝑌 ) · 𝑍 ) + ( ( 𝑋 + 𝑌 ) · 𝑇 ) ) ) |
| 12 |
1 2 3 4 5 6 7
|
ringdird |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| 13 |
1 2 3 4 5 6 8
|
ringdird |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑇 ) = ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) |
| 14 |
12 13
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑋 + 𝑌 ) · 𝑍 ) + ( ( 𝑋 + 𝑌 ) · 𝑇 ) ) = ( ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) + ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) ) |
| 15 |
11 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · ( 𝑍 + 𝑇 ) ) = ( ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) + ( ( 𝑋 · 𝑇 ) + ( 𝑌 · 𝑇 ) ) ) ) |