Metamath Proof Explorer
Description: Distributive law for the multiplication operation of a ring
(right-distributivity). (Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringdid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
|
|
ringdid.p |
⊢ + = ( +g ‘ 𝑅 ) |
|
|
ringdid.m |
⊢ · = ( .r ‘ 𝑅 ) |
|
|
ringdid.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
|
ringdid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
|
|
ringdid.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
|
|
ringdid.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
|
Assertion |
ringdird |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringdid.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
ringdid.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
ringdid.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
ringdid.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
ringdid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
ringdid.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
ringdid.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 8 |
1 2 3
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |
| 9 |
4 5 6 7 8
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) · 𝑍 ) = ( ( 𝑋 · 𝑍 ) + ( 𝑌 · 𝑍 ) ) ) |