| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimcn1b.1 |
|- ( ( ph /\ k e. A ) -> B e. X ) |
| 2 |
|
rlimcn1b.2 |
|- ( ph -> C e. X ) |
| 3 |
|
rlimcn1b.3 |
|- ( ph -> ( k e. A |-> B ) ~~>r C ) |
| 4 |
|
rlimcn1b.4 |
|- ( ph -> F : X --> CC ) |
| 5 |
|
rlimcn1b.5 |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. X ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` C ) ) ) < x ) ) |
| 6 |
4 1
|
cofmpt |
|- ( ph -> ( F o. ( k e. A |-> B ) ) = ( k e. A |-> ( F ` B ) ) ) |
| 7 |
1
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> X ) |
| 8 |
7 2 3 4 5
|
rlimcn1 |
|- ( ph -> ( F o. ( k e. A |-> B ) ) ~~>r ( F ` C ) ) |
| 9 |
6 8
|
eqbrtrrd |
|- ( ph -> ( k e. A |-> ( F ` B ) ) ~~>r ( F ` C ) ) |