Metamath Proof Explorer


Theorem rlimcn1b

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcn1b.1 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑋 )
rlimcn1b.2 ( 𝜑𝐶𝑋 )
rlimcn1b.3 ( 𝜑 → ( 𝑘𝐴𝐵 ) ⇝𝑟 𝐶 )
rlimcn1b.4 ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
rlimcn1b.5 ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧𝑋 ( ( abs ‘ ( 𝑧𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐶 ) ) ) < 𝑥 ) )
Assertion rlimcn1b ( 𝜑 → ( 𝑘𝐴 ↦ ( 𝐹𝐵 ) ) ⇝𝑟 ( 𝐹𝐶 ) )

Proof

Step Hyp Ref Expression
1 rlimcn1b.1 ( ( 𝜑𝑘𝐴 ) → 𝐵𝑋 )
2 rlimcn1b.2 ( 𝜑𝐶𝑋 )
3 rlimcn1b.3 ( 𝜑 → ( 𝑘𝐴𝐵 ) ⇝𝑟 𝐶 )
4 rlimcn1b.4 ( 𝜑𝐹 : 𝑋 ⟶ ℂ )
5 rlimcn1b.5 ( ( 𝜑𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+𝑧𝑋 ( ( abs ‘ ( 𝑧𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹𝑧 ) − ( 𝐹𝐶 ) ) ) < 𝑥 ) )
6 4 1 cofmpt ( 𝜑 → ( 𝐹 ∘ ( 𝑘𝐴𝐵 ) ) = ( 𝑘𝐴 ↦ ( 𝐹𝐵 ) ) )
7 1 fmpttd ( 𝜑 → ( 𝑘𝐴𝐵 ) : 𝐴𝑋 )
8 7 2 3 4 5 rlimcn1 ( 𝜑 → ( 𝐹 ∘ ( 𝑘𝐴𝐵 ) ) ⇝𝑟 ( 𝐹𝐶 ) )
9 6 8 eqbrtrrd ( 𝜑 → ( 𝑘𝐴 ↦ ( 𝐹𝐵 ) ) ⇝𝑟 ( 𝐹𝐶 ) )