Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcn1b.1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑋 ) |
2 |
|
rlimcn1b.2 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
3 |
|
rlimcn1b.3 |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
4 |
|
rlimcn1b.4 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
5 |
|
rlimcn1b.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝑋 ( ( abs ‘ ( 𝑧 − 𝐶 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐶 ) ) ) < 𝑥 ) ) |
6 |
4 1
|
cofmpt |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) |
7 |
1
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝑋 ) |
8 |
7 2 3 4 5
|
rlimcn1 |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |
9 |
6 8
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ⇝𝑟 ( 𝐹 ‘ 𝐶 ) ) |