Metamath Proof Explorer


Theorem rlimle

Description: Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimle.1
|- ( ph -> sup ( A , RR* , < ) = +oo )
rlimle.2
|- ( ph -> ( x e. A |-> B ) ~~>r D )
rlimle.3
|- ( ph -> ( x e. A |-> C ) ~~>r E )
rlimle.4
|- ( ( ph /\ x e. A ) -> B e. RR )
rlimle.5
|- ( ( ph /\ x e. A ) -> C e. RR )
rlimle.6
|- ( ( ph /\ x e. A ) -> B <_ C )
Assertion rlimle
|- ( ph -> D <_ E )

Proof

Step Hyp Ref Expression
1 rlimle.1
 |-  ( ph -> sup ( A , RR* , < ) = +oo )
2 rlimle.2
 |-  ( ph -> ( x e. A |-> B ) ~~>r D )
3 rlimle.3
 |-  ( ph -> ( x e. A |-> C ) ~~>r E )
4 rlimle.4
 |-  ( ( ph /\ x e. A ) -> B e. RR )
5 rlimle.5
 |-  ( ( ph /\ x e. A ) -> C e. RR )
6 rlimle.6
 |-  ( ( ph /\ x e. A ) -> B <_ C )
7 5 4 3 2 rlimsub
 |-  ( ph -> ( x e. A |-> ( C - B ) ) ~~>r ( E - D ) )
8 5 4 resubcld
 |-  ( ( ph /\ x e. A ) -> ( C - B ) e. RR )
9 5 4 subge0d
 |-  ( ( ph /\ x e. A ) -> ( 0 <_ ( C - B ) <-> B <_ C ) )
10 6 9 mpbird
 |-  ( ( ph /\ x e. A ) -> 0 <_ ( C - B ) )
11 1 7 8 10 rlimge0
 |-  ( ph -> 0 <_ ( E - D ) )
12 1 3 5 rlimrecl
 |-  ( ph -> E e. RR )
13 1 2 4 rlimrecl
 |-  ( ph -> D e. RR )
14 12 13 subge0d
 |-  ( ph -> ( 0 <_ ( E - D ) <-> D <_ E ) )
15 11 14 mpbid
 |-  ( ph -> D <_ E )