Metamath Proof Explorer


Theorem rlimle

Description: Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimle.1 φsupA*<=+∞
rlimle.2 φxABD
rlimle.3 φxACE
rlimle.4 φxAB
rlimle.5 φxAC
rlimle.6 φxABC
Assertion rlimle φDE

Proof

Step Hyp Ref Expression
1 rlimle.1 φsupA*<=+∞
2 rlimle.2 φxABD
3 rlimle.3 φxACE
4 rlimle.4 φxAB
5 rlimle.5 φxAC
6 rlimle.6 φxABC
7 5 4 3 2 rlimsub φxACBED
8 5 4 resubcld φxACB
9 5 4 subge0d φxA0CBBC
10 6 9 mpbird φxA0CB
11 1 7 8 10 rlimge0 φ0ED
12 1 3 5 rlimrecl φE
13 1 2 4 rlimrecl φD
14 12 13 subge0d φ0EDDE
15 11 14 mpbid φDE