Step |
Hyp |
Ref |
Expression |
1 |
|
rlimabs.1 |
|- ( ( ph /\ k e. A ) -> B e. V ) |
2 |
|
rlimabs.2 |
|- ( ph -> ( k e. A |-> B ) ~~>r C ) |
3 |
1 2
|
rlimmptrcl |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
|
rlimcl |
|- ( ( k e. A |-> B ) ~~>r C -> C e. CC ) |
5 |
2 4
|
syl |
|- ( ph -> C e. CC ) |
6 |
|
ref |
|- Re : CC --> RR |
7 |
|
ax-resscn |
|- RR C_ CC |
8 |
|
fss |
|- ( ( Re : CC --> RR /\ RR C_ CC ) -> Re : CC --> CC ) |
9 |
6 7 8
|
mp2an |
|- Re : CC --> CC |
10 |
9
|
a1i |
|- ( ph -> Re : CC --> CC ) |
11 |
|
recn2 |
|- ( ( C e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( Re ` z ) - ( Re ` C ) ) ) < x ) ) |
12 |
5 11
|
sylan |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( Re ` z ) - ( Re ` C ) ) ) < x ) ) |
13 |
3 5 2 10 12
|
rlimcn1b |
|- ( ph -> ( k e. A |-> ( Re ` B ) ) ~~>r ( Re ` C ) ) |