Metamath Proof Explorer


Theorem rmoeqdv

Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqdv.1
|- ( ph -> A = B )
Assertion rmoeqdv
|- ( ph -> ( E* x e. A ps <-> E* x e. B ps ) )

Proof

Step Hyp Ref Expression
1 rmoeqdv.1
 |-  ( ph -> A = B )
2 rmoeq1
 |-  ( A = B -> ( E* x e. A ps <-> E* x e. B ps ) )
3 1 2 syl
 |-  ( ph -> ( E* x e. A ps <-> E* x e. B ps ) )