Metamath Proof Explorer


Theorem rmoeqdv

Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqdv.1 ( 𝜑𝐴 = 𝐵 )
Assertion rmoeqdv ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 rmoeqdv.1 ( 𝜑𝐴 = 𝐵 )
2 rmoeq1 ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜓 ) )
3 1 2 syl ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜓 ) )