Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. General version of rmobidv . (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rmoeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
rmoeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rmoeqbidv | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | rmoeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 | 3 2 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
5 | 4 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜒 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) ) |