Step |
Hyp |
Ref |
Expression |
1 |
|
sbequbidv.1 |
⊢ ( 𝜑 → 𝑢 = 𝑣 ) |
2 |
|
sbequbidv.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
equequ2 |
⊢ ( 𝑢 = 𝑣 → ( 𝑡 = 𝑢 ↔ 𝑡 = 𝑣 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑡 = 𝑢 ↔ 𝑡 = 𝑣 ) ) |
5 |
2
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑥 = 𝑡 → 𝜓 ) ↔ ( 𝑥 = 𝑡 → 𝜒 ) ) ) |
6 |
5
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜒 ) ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝜑 → ( ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ↔ ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜒 ) ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑡 ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ↔ ∀ 𝑡 ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜒 ) ) ) ) |
9 |
|
df-sb |
⊢ ( [ 𝑢 / 𝑥 ] 𝜓 ↔ ∀ 𝑡 ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
10 |
|
df-sb |
⊢ ( [ 𝑣 / 𝑥 ] 𝜒 ↔ ∀ 𝑡 ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜒 ) ) ) |
11 |
8 9 10
|
3bitr4g |
⊢ ( 𝜑 → ( [ 𝑢 / 𝑥 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] 𝜒 ) ) |