Metamath Proof Explorer


Theorem sbequbidv

Description: Deduction substituting both sides of a biconditional. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sbequbidv.1 ( 𝜑𝑢 = 𝑣 )
sbequbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbequbidv ( 𝜑 → ( [ 𝑢 / 𝑥 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbequbidv.1 ( 𝜑𝑢 = 𝑣 )
2 sbequbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 equequ2 ( 𝑢 = 𝑣 → ( 𝑡 = 𝑢𝑡 = 𝑣 ) )
4 1 3 syl ( 𝜑 → ( 𝑡 = 𝑢𝑡 = 𝑣 ) )
5 2 imbi2d ( 𝜑 → ( ( 𝑥 = 𝑡𝜓 ) ↔ ( 𝑥 = 𝑡𝜒 ) ) )
6 5 albidv ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑡𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡𝜒 ) ) )
7 4 6 imbi12d ( 𝜑 → ( ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡𝜓 ) ) ↔ ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡𝜒 ) ) ) )
8 7 albidv ( 𝜑 → ( ∀ 𝑡 ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡𝜓 ) ) ↔ ∀ 𝑡 ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡𝜒 ) ) ) )
9 df-sb ( [ 𝑢 / 𝑥 ] 𝜓 ↔ ∀ 𝑡 ( 𝑡 = 𝑢 → ∀ 𝑥 ( 𝑥 = 𝑡𝜓 ) ) )
10 df-sb ( [ 𝑣 / 𝑥 ] 𝜒 ↔ ∀ 𝑡 ( 𝑡 = 𝑣 → ∀ 𝑥 ( 𝑥 = 𝑡𝜒 ) ) )
11 8 9 10 3bitr4g ( 𝜑 → ( [ 𝑢 / 𝑥 ] 𝜓 ↔ [ 𝑣 / 𝑥 ] 𝜒 ) )