Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Gino Giotto
Equality theorems.
Deduction versions.
sbequbidv
Next ⟩
disjeq12dv
Metamath Proof Explorer
Ascii
Unicode
Theorem
sbequbidv
Description:
Deduction substituting both sides of a biconditional.
(Contributed by
GG
, 1-Sep-2025)
Ref
Expression
Hypotheses
sbequbidv.1
⊢
φ
→
u
=
v
sbequbidv.2
⊢
φ
→
ψ
↔
χ
Assertion
sbequbidv
⊢
φ
→
u
x
ψ
↔
v
x
χ
Proof
Step
Hyp
Ref
Expression
1
sbequbidv.1
⊢
φ
→
u
=
v
2
sbequbidv.2
⊢
φ
→
ψ
↔
χ
3
equequ2
⊢
u
=
v
→
t
=
u
↔
t
=
v
4
1
3
syl
⊢
φ
→
t
=
u
↔
t
=
v
5
2
imbi2d
⊢
φ
→
x
=
t
→
ψ
↔
x
=
t
→
χ
6
5
albidv
⊢
φ
→
∀
x
x
=
t
→
ψ
↔
∀
x
x
=
t
→
χ
7
4
6
imbi12d
⊢
φ
→
t
=
u
→
∀
x
x
=
t
→
ψ
↔
t
=
v
→
∀
x
x
=
t
→
χ
8
7
albidv
⊢
φ
→
∀
t
t
=
u
→
∀
x
x
=
t
→
ψ
↔
∀
t
t
=
v
→
∀
x
x
=
t
→
χ
9
df-sb
⊢
u
x
ψ
↔
∀
t
t
=
u
→
∀
x
x
=
t
→
ψ
10
df-sb
⊢
v
x
χ
↔
∀
t
t
=
v
→
∀
x
x
=
t
→
χ
11
8
9
10
3bitr4g
⊢
φ
→
u
x
ψ
↔
v
x
χ