Metamath Proof Explorer


Theorem sbequbidv

Description: Deduction substituting both sides of a biconditional. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sbequbidv.1 φ u = v
sbequbidv.2 φ ψ χ
Assertion sbequbidv φ u x ψ v x χ

Proof

Step Hyp Ref Expression
1 sbequbidv.1 φ u = v
2 sbequbidv.2 φ ψ χ
3 equequ2 u = v t = u t = v
4 1 3 syl φ t = u t = v
5 2 imbi2d φ x = t ψ x = t χ
6 5 albidv φ x x = t ψ x x = t χ
7 4 6 imbi12d φ t = u x x = t ψ t = v x x = t χ
8 7 albidv φ t t = u x x = t ψ t t = v x x = t χ
9 df-sb u x ψ t t = u x x = t ψ
10 df-sb v x χ t t = v x x = t χ
11 8 9 10 3bitr4g φ u x ψ v x χ