Step |
Hyp |
Ref |
Expression |
1 |
|
sbequbidv.1 |
|- ( ph -> u = v ) |
2 |
|
sbequbidv.2 |
|- ( ph -> ( ps <-> ch ) ) |
3 |
|
equequ2 |
|- ( u = v -> ( t = u <-> t = v ) ) |
4 |
1 3
|
syl |
|- ( ph -> ( t = u <-> t = v ) ) |
5 |
2
|
imbi2d |
|- ( ph -> ( ( x = t -> ps ) <-> ( x = t -> ch ) ) ) |
6 |
5
|
albidv |
|- ( ph -> ( A. x ( x = t -> ps ) <-> A. x ( x = t -> ch ) ) ) |
7 |
4 6
|
imbi12d |
|- ( ph -> ( ( t = u -> A. x ( x = t -> ps ) ) <-> ( t = v -> A. x ( x = t -> ch ) ) ) ) |
8 |
7
|
albidv |
|- ( ph -> ( A. t ( t = u -> A. x ( x = t -> ps ) ) <-> A. t ( t = v -> A. x ( x = t -> ch ) ) ) ) |
9 |
|
df-sb |
|- ( [ u / x ] ps <-> A. t ( t = u -> A. x ( x = t -> ps ) ) ) |
10 |
|
df-sb |
|- ( [ v / x ] ch <-> A. t ( t = v -> A. x ( x = t -> ch ) ) ) |
11 |
8 9 10
|
3bitr4g |
|- ( ph -> ( [ u / x ] ps <-> [ v / x ] ch ) ) |