Metamath Proof Explorer


Theorem sbequbidv

Description: Deduction substituting both sides of a biconditional. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sbequbidv.1
|- ( ph -> u = v )
sbequbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion sbequbidv
|- ( ph -> ( [ u / x ] ps <-> [ v / x ] ch ) )

Proof

Step Hyp Ref Expression
1 sbequbidv.1
 |-  ( ph -> u = v )
2 sbequbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 equequ2
 |-  ( u = v -> ( t = u <-> t = v ) )
4 1 3 syl
 |-  ( ph -> ( t = u <-> t = v ) )
5 2 imbi2d
 |-  ( ph -> ( ( x = t -> ps ) <-> ( x = t -> ch ) ) )
6 5 albidv
 |-  ( ph -> ( A. x ( x = t -> ps ) <-> A. x ( x = t -> ch ) ) )
7 4 6 imbi12d
 |-  ( ph -> ( ( t = u -> A. x ( x = t -> ps ) ) <-> ( t = v -> A. x ( x = t -> ch ) ) ) )
8 7 albidv
 |-  ( ph -> ( A. t ( t = u -> A. x ( x = t -> ps ) ) <-> A. t ( t = v -> A. x ( x = t -> ch ) ) ) )
9 df-sb
 |-  ( [ u / x ] ps <-> A. t ( t = u -> A. x ( x = t -> ps ) ) )
10 df-sb
 |-  ( [ v / x ] ch <-> A. t ( t = v -> A. x ( x = t -> ch ) ) )
11 8 9 10 3bitr4g
 |-  ( ph -> ( [ u / x ] ps <-> [ v / x ] ch ) )