Metamath Proof Explorer


Theorem disjeq12dv

Description: Equality theorem for disjoint collection. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses disjeq12dv.1
|- ( ph -> A = B )
disjeq12dv.2
|- ( ph -> C = D )
Assertion disjeq12dv
|- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) )

Proof

Step Hyp Ref Expression
1 disjeq12dv.1
 |-  ( ph -> A = B )
2 disjeq12dv.2
 |-  ( ph -> C = D )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 anbi1d
 |-  ( ph -> ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) )
5 4 mobidv
 |-  ( ph -> ( E* x ( x e. A /\ t e. C ) <-> E* x ( x e. B /\ t e. C ) ) )
6 df-rmo
 |-  ( E* x e. A t e. C <-> E* x ( x e. A /\ t e. C ) )
7 df-rmo
 |-  ( E* x e. B t e. C <-> E* x ( x e. B /\ t e. C ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( E* x e. A t e. C <-> E* x e. B t e. C ) )
9 8 albidv
 |-  ( ph -> ( A. t E* x e. A t e. C <-> A. t E* x e. B t e. C ) )
10 df-disj
 |-  ( Disj_ x e. A C <-> A. t E* x e. A t e. C )
11 df-disj
 |-  ( Disj_ x e. B C <-> A. t E* x e. B t e. C )
12 9 10 11 3bitr4g
 |-  ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B C ) )
13 2 adantr
 |-  ( ( ph /\ x e. B ) -> C = D )
14 13 disjeq2dv
 |-  ( ph -> ( Disj_ x e. B C <-> Disj_ x e. B D ) )
15 12 14 bitrd
 |-  ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) )