| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjeq12dv.1 |
|- ( ph -> A = B ) |
| 2 |
|
disjeq12dv.2 |
|- ( ph -> C = D ) |
| 3 |
1
|
eleq2d |
|- ( ph -> ( x e. A <-> x e. B ) ) |
| 4 |
3
|
anbi1d |
|- ( ph -> ( ( x e. A /\ t e. C ) <-> ( x e. B /\ t e. C ) ) ) |
| 5 |
4
|
mobidv |
|- ( ph -> ( E* x ( x e. A /\ t e. C ) <-> E* x ( x e. B /\ t e. C ) ) ) |
| 6 |
|
df-rmo |
|- ( E* x e. A t e. C <-> E* x ( x e. A /\ t e. C ) ) |
| 7 |
|
df-rmo |
|- ( E* x e. B t e. C <-> E* x ( x e. B /\ t e. C ) ) |
| 8 |
5 6 7
|
3bitr4g |
|- ( ph -> ( E* x e. A t e. C <-> E* x e. B t e. C ) ) |
| 9 |
8
|
albidv |
|- ( ph -> ( A. t E* x e. A t e. C <-> A. t E* x e. B t e. C ) ) |
| 10 |
|
df-disj |
|- ( Disj_ x e. A C <-> A. t E* x e. A t e. C ) |
| 11 |
|
df-disj |
|- ( Disj_ x e. B C <-> A. t E* x e. B t e. C ) |
| 12 |
9 10 11
|
3bitr4g |
|- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> C = D ) |
| 14 |
13
|
disjeq2dv |
|- ( ph -> ( Disj_ x e. B C <-> Disj_ x e. B D ) ) |
| 15 |
12 14
|
bitrd |
|- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) ) |