Metamath Proof Explorer


Theorem ixpeq12dv

Description: Equality theorem for infinite Cartesian product. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12dv.1
|- ( ph -> A = B )
ixpeq12dv.2
|- ( ph -> C = D )
Assertion ixpeq12dv
|- ( ph -> X_ x e. A C = X_ x e. B D )

Proof

Step Hyp Ref Expression
1 ixpeq12dv.1
 |-  ( ph -> A = B )
2 ixpeq12dv.2
 |-  ( ph -> C = D )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 abbidv
 |-  ( ph -> { x | x e. A } = { x | x e. B } )
5 4 fneq2d
 |-  ( ph -> ( t Fn { x | x e. A } <-> t Fn { x | x e. B } ) )
6 3 imbi1d
 |-  ( ph -> ( ( x e. A -> ( t ` x ) e. C ) <-> ( x e. B -> ( t ` x ) e. C ) ) )
7 6 albidv
 |-  ( ph -> ( A. x ( x e. A -> ( t ` x ) e. C ) <-> A. x ( x e. B -> ( t ` x ) e. C ) ) )
8 df-ral
 |-  ( A. x e. A ( t ` x ) e. C <-> A. x ( x e. A -> ( t ` x ) e. C ) )
9 df-ral
 |-  ( A. x e. B ( t ` x ) e. C <-> A. x ( x e. B -> ( t ` x ) e. C ) )
10 7 8 9 3bitr4g
 |-  ( ph -> ( A. x e. A ( t ` x ) e. C <-> A. x e. B ( t ` x ) e. C ) )
11 5 10 anbi12d
 |-  ( ph -> ( ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) <-> ( t Fn { x | x e. B } /\ A. x e. B ( t ` x ) e. C ) ) )
12 11 abbidv
 |-  ( ph -> { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) } = { t | ( t Fn { x | x e. B } /\ A. x e. B ( t ` x ) e. C ) } )
13 df-ixp
 |-  X_ x e. A C = { t | ( t Fn { x | x e. A } /\ A. x e. A ( t ` x ) e. C ) }
14 df-ixp
 |-  X_ x e. B C = { t | ( t Fn { x | x e. B } /\ A. x e. B ( t ` x ) e. C ) }
15 12 13 14 3eqtr4g
 |-  ( ph -> X_ x e. A C = X_ x e. B C )
16 2 ixpeq2dv
 |-  ( ph -> X_ x e. B C = X_ x e. B D )
17 15 16 eqtrd
 |-  ( ph -> X_ x e. A C = X_ x e. B D )