Metamath Proof Explorer


Theorem ixpeq12dv

Description: Equality theorem for infinite Cartesian product. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12dv.1 ( 𝜑𝐴 = 𝐵 )
ixpeq12dv.2 ( 𝜑𝐶 = 𝐷 )
Assertion ixpeq12dv ( 𝜑X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 ixpeq12dv.1 ( 𝜑𝐴 = 𝐵 )
2 ixpeq12dv.2 ( 𝜑𝐶 = 𝐷 )
3 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
4 3 abbidv ( 𝜑 → { 𝑥𝑥𝐴 } = { 𝑥𝑥𝐵 } )
5 4 fneq2d ( 𝜑 → ( 𝑡 Fn { 𝑥𝑥𝐴 } ↔ 𝑡 Fn { 𝑥𝑥𝐵 } ) )
6 3 imbi1d ( 𝜑 → ( ( 𝑥𝐴 → ( 𝑡𝑥 ) ∈ 𝐶 ) ↔ ( 𝑥𝐵 → ( 𝑡𝑥 ) ∈ 𝐶 ) ) )
7 6 albidv ( 𝜑 → ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝑡𝑥 ) ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑡𝑥 ) ∈ 𝐶 ) ) )
8 df-ral ( ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝑡𝑥 ) ∈ 𝐶 ) )
9 df-ral ( ∀ 𝑥𝐵 ( 𝑡𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑡𝑥 ) ∈ 𝐶 ) )
10 7 8 9 3bitr4g ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥𝐵 ( 𝑡𝑥 ) ∈ 𝐶 ) )
11 5 10 anbi12d ( 𝜑 → ( ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) ↔ ( 𝑡 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑡𝑥 ) ∈ 𝐶 ) ) )
12 11 abbidv ( 𝜑 → { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑡𝑥 ) ∈ 𝐶 ) } )
13 df-ixp X 𝑥𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑡𝑥 ) ∈ 𝐶 ) }
14 df-ixp X 𝑥𝐵 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥𝑥𝐵 } ∧ ∀ 𝑥𝐵 ( 𝑡𝑥 ) ∈ 𝐶 ) }
15 12 13 14 3eqtr4g ( 𝜑X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶 )
16 2 ixpeq2dv ( 𝜑X 𝑥𝐵 𝐶 = X 𝑥𝐵 𝐷 )
17 15 16 eqtrd ( 𝜑X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐷 )