Step |
Hyp |
Ref |
Expression |
1 |
|
ixpeq12dv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
ixpeq12dv.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
3 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 |
3
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ 𝑥 ∈ 𝐴 } = { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) |
5 |
4
|
fneq2d |
⊢ ( 𝜑 → ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ) ) |
6 |
3
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) |
11 |
5 10
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ↔ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
12 |
11
|
abbidv |
⊢ ( 𝜑 → { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } = { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } ) |
13 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } |
14 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐵 𝐶 = { 𝑡 ∣ ( 𝑡 Fn { 𝑥 ∣ 𝑥 ∈ 𝐵 } ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑡 ‘ 𝑥 ) ∈ 𝐶 ) } |
15 |
12 13 14
|
3eqtr4g |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐶 ) |
16 |
2
|
ixpeq2dv |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐵 𝐶 = X 𝑥 ∈ 𝐵 𝐷 ) |
17 |
15 16
|
eqtrd |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐶 = X 𝑥 ∈ 𝐵 𝐷 ) |