Metamath Proof Explorer


Theorem ixpeq12dv

Description: Equality theorem for infinite Cartesian product. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses ixpeq12dv.1 φ A = B
ixpeq12dv.2 φ C = D
Assertion ixpeq12dv φ x A C = x B D

Proof

Step Hyp Ref Expression
1 ixpeq12dv.1 φ A = B
2 ixpeq12dv.2 φ C = D
3 1 eleq2d φ x A x B
4 3 abbidv φ x | x A = x | x B
5 4 fneq2d φ t Fn x | x A t Fn x | x B
6 3 imbi1d φ x A t x C x B t x C
7 6 albidv φ x x A t x C x x B t x C
8 df-ral x A t x C x x A t x C
9 df-ral x B t x C x x B t x C
10 7 8 9 3bitr4g φ x A t x C x B t x C
11 5 10 anbi12d φ t Fn x | x A x A t x C t Fn x | x B x B t x C
12 11 abbidv φ t | t Fn x | x A x A t x C = t | t Fn x | x B x B t x C
13 df-ixp x A C = t | t Fn x | x A x A t x C
14 df-ixp x B C = t | t Fn x | x B x B t x C
15 12 13 14 3eqtr4g φ x A C = x B C
16 2 ixpeq2dv φ x B C = x B D
17 15 16 eqtrd φ x A C = x B D