Metamath Proof Explorer


Theorem sumeq12sdv

Description: Equality deduction for sum. General version of sumeq2sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12sdv.1 ( 𝜑𝐴 = 𝐵 )
sumeq12sdv.2 ( 𝜑𝐶 = 𝐷 )
Assertion sumeq12sdv ( 𝜑 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 sumeq12sdv.1 ( 𝜑𝐴 = 𝐵 )
2 sumeq12sdv.2 ( 𝜑𝐶 = 𝐷 )
3 1 sumeq1d ( 𝜑 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐶 )
4 2 sumeq2sdv ( 𝜑 → Σ 𝑘𝐵 𝐶 = Σ 𝑘𝐵 𝐷 )
5 3 4 eqtrd ( 𝜑 → Σ 𝑘𝐴 𝐶 = Σ 𝑘𝐵 𝐷 )