Metamath Proof Explorer


Theorem sumeq12sdv

Description: Equality deduction for sum. General version of sumeq2sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses sumeq12sdv.1
|- ( ph -> A = B )
sumeq12sdv.2
|- ( ph -> C = D )
Assertion sumeq12sdv
|- ( ph -> sum_ k e. A C = sum_ k e. B D )

Proof

Step Hyp Ref Expression
1 sumeq12sdv.1
 |-  ( ph -> A = B )
2 sumeq12sdv.2
 |-  ( ph -> C = D )
3 1 sumeq1d
 |-  ( ph -> sum_ k e. A C = sum_ k e. B C )
4 2 sumeq2sdv
 |-  ( ph -> sum_ k e. B C = sum_ k e. B D )
5 3 4 eqtrd
 |-  ( ph -> sum_ k e. A C = sum_ k e. B D )