Metamath Proof Explorer


Theorem prodeq12sdv

Description: Equality deduction for product. General version of prodeq2sdv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses prodeq12sdv.1
|- ( ph -> A = B )
prodeq12sdv.2
|- ( ph -> C = D )
Assertion prodeq12sdv
|- ( ph -> prod_ k e. A C = prod_ k e. B D )

Proof

Step Hyp Ref Expression
1 prodeq12sdv.1
 |-  ( ph -> A = B )
2 prodeq12sdv.2
 |-  ( ph -> C = D )
3 1 sseq1d
 |-  ( ph -> ( A C_ ( ZZ>= ` m ) <-> B C_ ( ZZ>= ` m ) ) )
4 1 eleq2d
 |-  ( ph -> ( k e. A <-> k e. B ) )
5 4 ifbid
 |-  ( ph -> if ( k e. A , C , 1 ) = if ( k e. B , C , 1 ) )
6 5 mpteq2dv
 |-  ( ph -> ( k e. ZZ |-> if ( k e. A , C , 1 ) ) = ( k e. ZZ |-> if ( k e. B , C , 1 ) ) )
7 6 seqeq3d
 |-  ( ph -> seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) = seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) )
8 7 breq1d
 |-  ( ph -> ( seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y <-> seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) )
9 8 anbi2d
 |-  ( ph -> ( ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) ) )
10 9 exbidv
 |-  ( ph -> ( E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) ) )
11 10 rexbidv
 |-  ( ph -> ( E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) <-> E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) ) )
12 6 seqeq3d
 |-  ( ph -> seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) = seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) )
13 12 breq1d
 |-  ( ph -> ( seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x <-> seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) )
14 3 11 13 3anbi123d
 |-  ( ph -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) <-> ( B C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) ) )
15 14 rexbidv
 |-  ( ph -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) <-> E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) ) )
16 1 f1oeq3d
 |-  ( ph -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... m ) -1-1-onto-> B ) )
17 16 anbi1d
 |-  ( ph -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
18 17 exbidv
 |-  ( ph -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
19 18 rexbidv
 |-  ( ph -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
20 15 19 orbi12d
 |-  ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) <-> ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) )
21 20 iotabidv
 |-  ( ph -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) )
22 df-prod
 |-  prod_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
23 df-prod
 |-  prod_ k e. B C = ( iota x ( E. m e. ZZ ( B C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. B , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> B /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) )
24 21 22 23 3eqtr4g
 |-  ( ph -> prod_ k e. A C = prod_ k e. B C )
25 2 prodeq2sdv
 |-  ( ph -> prod_ k e. B C = prod_ k e. B D )
26 24 25 eqtrd
 |-  ( ph -> prod_ k e. A C = prod_ k e. B D )