| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjeq12dv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 2 |
|
disjeq12dv.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 3 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 |
3
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶 ) ) ) |
| 5 |
4
|
mobidv |
⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶 ) ) ) |
| 6 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑡 ∈ 𝐶 ) ) |
| 7 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑡 ∈ 𝐶 ) ) |
| 8 |
5 6 7
|
3bitr4g |
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∃* 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) ) |
| 9 |
8
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀ 𝑡 ∃* 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) ) |
| 10 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ) |
| 11 |
|
df-disj |
⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑡 ∃* 𝑥 ∈ 𝐵 𝑡 ∈ 𝐶 ) |
| 12 |
9 10 11
|
3bitr4g |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶 ) ) |
| 13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
| 14 |
13
|
disjeq2dv |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷 ) ) |
| 15 |
12 14
|
bitrd |
⊢ ( 𝜑 → ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷 ) ) |