Metamath Proof Explorer


Theorem disjeq12dv

Description: Equality theorem for disjoint collection. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses disjeq12dv.1 ( 𝜑𝐴 = 𝐵 )
disjeq12dv.2 ( 𝜑𝐶 = 𝐷 )
Assertion disjeq12dv ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷 ) )

Proof

Step Hyp Ref Expression
1 disjeq12dv.1 ( 𝜑𝐴 = 𝐵 )
2 disjeq12dv.2 ( 𝜑𝐶 = 𝐷 )
3 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
4 3 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝑡𝐶 ) ↔ ( 𝑥𝐵𝑡𝐶 ) ) )
5 4 mobidv ( 𝜑 → ( ∃* 𝑥 ( 𝑥𝐴𝑡𝐶 ) ↔ ∃* 𝑥 ( 𝑥𝐵𝑡𝐶 ) ) )
6 df-rmo ( ∃* 𝑥𝐴 𝑡𝐶 ↔ ∃* 𝑥 ( 𝑥𝐴𝑡𝐶 ) )
7 df-rmo ( ∃* 𝑥𝐵 𝑡𝐶 ↔ ∃* 𝑥 ( 𝑥𝐵𝑡𝐶 ) )
8 5 6 7 3bitr4g ( 𝜑 → ( ∃* 𝑥𝐴 𝑡𝐶 ↔ ∃* 𝑥𝐵 𝑡𝐶 ) )
9 8 albidv ( 𝜑 → ( ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐶 ↔ ∀ 𝑡 ∃* 𝑥𝐵 𝑡𝐶 ) )
10 df-disj ( Disj 𝑥𝐴 𝐶 ↔ ∀ 𝑡 ∃* 𝑥𝐴 𝑡𝐶 )
11 df-disj ( Disj 𝑥𝐵 𝐶 ↔ ∀ 𝑡 ∃* 𝑥𝐵 𝑡𝐶 )
12 9 10 11 3bitr4g ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶 ) )
13 2 adantr ( ( 𝜑𝑥𝐵 ) → 𝐶 = 𝐷 )
14 13 disjeq2dv ( 𝜑 → ( Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 𝐷 ) )
15 12 14 bitrd ( 𝜑 → ( Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷 ) )