Metamath Proof Explorer


Theorem rmoeqbidv

Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. General version of rmobidv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rmoeqbidv.1
|- ( ph -> A = B )
rmoeqbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion rmoeqbidv
|- ( ph -> ( E* x e. A ps <-> E* x e. B ch ) )

Proof

Step Hyp Ref Expression
1 rmoeqbidv.1
 |-  ( ph -> A = B )
2 rmoeqbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 2 anbi12d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
5 4 mobidv
 |-  ( ph -> ( E* x ( x e. A /\ ps ) <-> E* x ( x e. B /\ ch ) ) )
6 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
7 df-rmo
 |-  ( E* x e. B ch <-> E* x ( x e. B /\ ch ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( E* x e. A ps <-> E* x e. B ch ) )