Metamath Proof Explorer


Theorem rng1nfld

Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis rng1nfld.m
|- M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. }
Assertion rng1nfld
|- ( Z e. V -> M e/ Field )

Proof

Step Hyp Ref Expression
1 rng1nfld.m
 |-  M = { <. ( Base ` ndx ) , { Z } >. , <. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. , <. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. }
2 1 rng1nnzr
 |-  ( Z e. V -> M e/ NzRing )
3 df-nel
 |-  ( M e/ NzRing <-> -. M e. NzRing )
4 2 3 sylib
 |-  ( Z e. V -> -. M e. NzRing )
5 drngnzr
 |-  ( M e. DivRing -> M e. NzRing )
6 4 5 nsyl
 |-  ( Z e. V -> -. M e. DivRing )
7 isfld
 |-  ( M e. Field <-> ( M e. DivRing /\ M e. CRing ) )
8 simpl
 |-  ( ( M e. DivRing /\ M e. CRing ) -> M e. DivRing )
9 8 a1i
 |-  ( Z e. V -> ( ( M e. DivRing /\ M e. CRing ) -> M e. DivRing ) )
10 7 9 syl5bi
 |-  ( Z e. V -> ( M e. Field -> M e. DivRing ) )
11 6 10 mtod
 |-  ( Z e. V -> -. M e. Field )
12 df-nel
 |-  ( M e/ Field <-> -. M e. Field )
13 11 12 sylibr
 |-  ( Z e. V -> M e/ Field )