Metamath Proof Explorer


Theorem rng1nfld

Description: The zero ring is not a field. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis rng1nfld.m 𝑀 = { ⟨ ( Base ‘ ndx ) , { 𝑍 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ }
Assertion rng1nfld ( 𝑍𝑉𝑀 ∉ Field )

Proof

Step Hyp Ref Expression
1 rng1nfld.m 𝑀 = { ⟨ ( Base ‘ ndx ) , { 𝑍 } ⟩ , ⟨ ( +g ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , { ⟨ ⟨ 𝑍 , 𝑍 ⟩ , 𝑍 ⟩ } ⟩ }
2 1 rng1nnzr ( 𝑍𝑉𝑀 ∉ NzRing )
3 df-nel ( 𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing )
4 2 3 sylib ( 𝑍𝑉 → ¬ 𝑀 ∈ NzRing )
5 drngnzr ( 𝑀 ∈ DivRing → 𝑀 ∈ NzRing )
6 4 5 nsyl ( 𝑍𝑉 → ¬ 𝑀 ∈ DivRing )
7 isfld ( 𝑀 ∈ Field ↔ ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) )
8 simpl ( ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) → 𝑀 ∈ DivRing )
9 8 a1i ( 𝑍𝑉 → ( ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) → 𝑀 ∈ DivRing ) )
10 7 9 syl5bi ( 𝑍𝑉 → ( 𝑀 ∈ Field → 𝑀 ∈ DivRing ) )
11 6 10 mtod ( 𝑍𝑉 → ¬ 𝑀 ∈ Field )
12 df-nel ( 𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field )
13 11 12 sylibr ( 𝑍𝑉𝑀 ∉ Field )