Step |
Hyp |
Ref |
Expression |
1 |
|
rng1nfld.m |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , { 𝑍 } 〉 , 〈 ( +g ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 , 〈 ( .r ‘ ndx ) , { 〈 〈 𝑍 , 𝑍 〉 , 𝑍 〉 } 〉 } |
2 |
1
|
rng1nnzr |
⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ NzRing ) |
3 |
|
df-nel |
⊢ ( 𝑀 ∉ NzRing ↔ ¬ 𝑀 ∈ NzRing ) |
4 |
2 3
|
sylib |
⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ NzRing ) |
5 |
|
drngnzr |
⊢ ( 𝑀 ∈ DivRing → 𝑀 ∈ NzRing ) |
6 |
4 5
|
nsyl |
⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ DivRing ) |
7 |
|
isfld |
⊢ ( 𝑀 ∈ Field ↔ ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) ) |
8 |
|
simpl |
⊢ ( ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) → 𝑀 ∈ DivRing ) |
9 |
8
|
a1i |
⊢ ( 𝑍 ∈ 𝑉 → ( ( 𝑀 ∈ DivRing ∧ 𝑀 ∈ CRing ) → 𝑀 ∈ DivRing ) ) |
10 |
7 9
|
syl5bi |
⊢ ( 𝑍 ∈ 𝑉 → ( 𝑀 ∈ Field → 𝑀 ∈ DivRing ) ) |
11 |
6 10
|
mtod |
⊢ ( 𝑍 ∈ 𝑉 → ¬ 𝑀 ∈ Field ) |
12 |
|
df-nel |
⊢ ( 𝑀 ∉ Field ↔ ¬ 𝑀 ∈ Field ) |
13 |
11 12
|
sylibr |
⊢ ( 𝑍 ∈ 𝑉 → 𝑀 ∉ Field ) |