| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringi.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ringi.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ringi.3 |
|- X = ran G |
| 4 |
1 2
|
opeq12i |
|- <. G , H >. = <. ( 1st ` R ) , ( 2nd ` R ) >. |
| 5 |
|
relrngo |
|- Rel RingOps |
| 6 |
|
1st2nd |
|- ( ( Rel RingOps /\ R e. RingOps ) -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 7 |
5 6
|
mpan |
|- ( R e. RingOps -> R = <. ( 1st ` R ) , ( 2nd ` R ) >. ) |
| 8 |
4 7
|
eqtr4id |
|- ( R e. RingOps -> <. G , H >. = R ) |
| 9 |
|
id |
|- ( R e. RingOps -> R e. RingOps ) |
| 10 |
8 9
|
eqeltrd |
|- ( R e. RingOps -> <. G , H >. e. RingOps ) |
| 11 |
2
|
fvexi |
|- H e. _V |
| 12 |
3
|
isrngo |
|- ( H e. _V -> ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) ) |
| 13 |
11 12
|
ax-mp |
|- ( <. G , H >. e. RingOps <-> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 14 |
10 13
|
sylib |
|- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( X X. X ) --> X ) /\ ( A. x e. X A. y e. X A. z e. X ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. X A. y e. X ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |