| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnplrnml0.1 |
|- H = ( 2nd ` R ) |
| 2 |
|
rnplrnml0.2 |
|- G = ( 1st ` R ) |
| 3 |
|
eqid |
|- ran G = ran G |
| 4 |
2 1 3
|
rngosm |
|- ( R e. RingOps -> H : ( ran G X. ran G ) --> ran G ) |
| 5 |
2 1 3
|
rngoi |
|- ( R e. RingOps -> ( ( G e. AbelOp /\ H : ( ran G X. ran G ) --> ran G ) /\ ( A. x e. ran G A. y e. ran G A. z e. ran G ( ( ( x H y ) H z ) = ( x H ( y H z ) ) /\ ( x H ( y G z ) ) = ( ( x H y ) G ( x H z ) ) /\ ( ( x G y ) H z ) = ( ( x H z ) G ( y H z ) ) ) /\ E. x e. ran G A. y e. ran G ( ( x H y ) = y /\ ( y H x ) = y ) ) ) ) |
| 6 |
5
|
simprrd |
|- ( R e. RingOps -> E. x e. ran G A. y e. ran G ( ( x H y ) = y /\ ( y H x ) = y ) ) |
| 7 |
|
rngmgmbs4 |
|- ( ( H : ( ran G X. ran G ) --> ran G /\ E. x e. ran G A. y e. ran G ( ( x H y ) = y /\ ( y H x ) = y ) ) -> ran H = ran G ) |
| 8 |
4 6 7
|
syl2anc |
|- ( R e. RingOps -> ran H = ran G ) |
| 9 |
8
|
eqcomd |
|- ( R e. RingOps -> ran G = ran H ) |