Metamath Proof Explorer


Theorem rnopabss

Description: Upper bound for the range of a restricted class of ordered pairs. (Contributed by Eric Schmidt, 16-Sep-2025)

Ref Expression
Assertion rnopabss
|- ran { <. x , y >. | ( y e. A /\ ph ) } C_ A

Proof

Step Hyp Ref Expression
1 rnopab
 |-  ran { <. x , y >. | ( y e. A /\ ph ) } = { y | E. x ( y e. A /\ ph ) }
2 19.42v
 |-  ( E. x ( y e. A /\ ph ) <-> ( y e. A /\ E. x ph ) )
3 2 abbii
 |-  { y | E. x ( y e. A /\ ph ) } = { y | ( y e. A /\ E. x ph ) }
4 ssab2
 |-  { y | ( y e. A /\ E. x ph ) } C_ A
5 3 4 eqsstri
 |-  { y | E. x ( y e. A /\ ph ) } C_ A
6 1 5 eqsstri
 |-  ran { <. x , y >. | ( y e. A /\ ph ) } C_ A